Silvercrest Submarines are the UK's premier Submarine & Rov sales company with contracts performed worldwide.



Click here for our homepage
Click here to learn more about our profile
Click here for our complete submarine sales listing
Click here to learn more about our submarine engineering capabilities
Click here to learn more about our submersible and ROV motors
Click here to read our news letters
Click here for related links
Click here for information on how to contact us



Female Submarine officer ‘filmed X-rated videos’ at Faslane

Lieutenant Claire Jenkins admitted filming the explicit videos with her partner, Leading Seaman Liam Doddington. A Royal Navy officer is under investigation after she was caught making indecent films with her partner, a leading seaman, at the Faslane nuclear submarine base. Lieutenant Claire Jenkins, 29, who has commanded a team of sailors on HMS Artful, the Astute-class attack submarine, is accused of selling the content on an adult website. The warfare officer, who uses the name.Cally Taylor on the website, regularly posts explicit pictures and videos with her boyfriend, Liam Doddington, also based at Faslane.


Three Injured After Japanese Submarine and Bulker Collide

The Japanese submarine reportedly collided with Hong Kong-registered bulk carrier Ocean Artemis. A Japanese submarine and a commercial vessel were involved in a crash off the Pacific coast on Monday and three of the submarine’s crew suffered minor injuries and it was slightly damaged but still able to sail, government officials said.The submarine, operated by the Maritime Self-Defense Force, as Japan’s navy is known, and the ship crashed off Kochi prefecture in southern Japan, chief cabinet Secretary Katsunobu Kato told a regular news conference.Kato, quoting the Coast Guard, said that there was no damage to the private ship.Authorities were looking into details, such as the type of the ship and in which country it was registered, Kato said. The Maritime Self-Defense Force said three crew members on the submarine suffered minor injuries and the vessel’s mast was damaged but not enough to hinder its ability to sail.


The first Russian submarine

This 18th-century invention was intended to be the wonder weapon of the Russian Empire and bring the Baltic Sea under sway. In the early 20th century, submarines became an integral part of the armed forces of all the Great Powers. Russia, however, could have created a submarine fleet 200 years earlier. Why didn’t it? The idea to build a "stealth vessel" capable of sailing underwater and “knocking a warship out from below” belonged to Yefim Nikonov, a simple carpenter who worked in a shipyard in the 18th century. He had no engineering background and was illiterate. But that did not stop him from being a master shipbuilder.Nikonov sent numerous technical specifications (written down by others) to Peter the Great for a submarine that would “lie quietly under the waves then destroy warships, at least ten or twenty, with a projectile.” If it failed, he said, he was ready to answer with his head. In 1719, the tsar finally paid attention to the project and invited Nikonov to discuss the idea in person. Although the concept was by no means new (Dutch engineer Cornelius Drebbel had tested the world’s first submarine in the Thames in London back in 1620), Peter became transfixed by it. He appointed Yefim as his “master of stealth vessels” and gave him a workshop in St Petersburg and the right to choose his assistants.Thirteen months later, a small prototype was tested in the Neva. Halfway across the river, the vessel submerged, then surfaced on the other side. The second dive did not go so smoothly, and the vessel failed to rise. The tsar, looking on, personally took part in the operation to raise the ship using ropes. Despite the failure, he ordered the construction of a full-fledged model. Nikonov’s “stealth vessel” was completed in 1724. When entering it in the books, the clerk miswrote one letter, writing “Morel” instead of “Model”. The name stuck. The first Russian submarine was shaped like a large wooden barrel six meters long, two meters high. It was fastened together with iron hoops and wrapped in leather. Ten tin plates perforated with tiny holes were built into the body. Through them, outboard water flowed into leather bags, causing the vessel to submerge. On surfacing, the water was discharged overboard using a copper piston pump. The five-crewed submarine was powered by oars. Morel’s main weapon was to be flamethrowers ("fiery copper pipes"). In addition, a diver would climb out and, using special tools, damage the hull of the enemy ship. Nikonov even designed a "diving suit" for this new profession. In the spring of 1724, the "stealth vessel" was again tested in the Neva, once more in the presence of Peter the Great and naval officers. It successfully sank to a depth of 3-4 meters, but then scraped the ground with its keel. The hermetically sealed Morel was ripped open, and the crew had to be urgently rescued. But despite this second failure, Peter refused to condemn either the vessel or its inventor, ordering that he "not be blamed for this discomfiture." However, the tsar’s death soon afterwards put paid to the ambitious project. The now patronless Nikonov had far less money, manpower and materials to play with. The last “stealth vessel” tests took place in 1727. After another unsuccessful attempt, Nikonov was demoted from the rank of master shipbuilder to simple “admiralty worker” and sent from the capital to remote Astrakhan. As a result, Russia had to wait nearly two more centuries before acquiring its first submarine fleet.


The first submarine to sink a warship was more deadly for its own crew than for the enemy

On February 17, 1864, Confederate submarine H.L. Hunley attacked and sank USS Housatonic in Charleston Harbor, killing five Union sailors. Hunley became the first submarine to sink an enemy warship, but Hunley and its eight crew members didn't make it back. On the night of February 17, 1864, US Navy sailors aboard the sloop-of-war USS Housatonic were watching the approaches to Charleston Harbor. They were part of the Union Navy's blockade force, which was approaching its third year of operation outside Charleston. At about 8:45 p.m., Acting Master J.K. Crosby noticed a large semi-submerged object slowly making its way toward the sloop. It was believed to be a porpoise or log, but as the object came closer, its size and metal body made clear that it was a man-made vessel. The sailors raised the alarm, but the vessel was too close to be hit by the sloop's 12 guns, forcing some of the crew to shoot at it with muskets and pistols. But they were too late. The vessel was the H.L. Hunley, one of the first submarines in history, and the first to successfully sink an enemy ship — at the cost of the lives of its entire crew. The Confederate States of America were at a naval disadvantage as soon as the war began. The Union maintained control of virtually all of the US Navy's vessels and destroyed those in vulnerable ports in the South. The Union also began a massive ship-building program that would see its Navy swell from 90 warships in 1861 to over 600 by 1865. Recognizing the importance of isolating the CSA from any foreign markets or assistance, President Abraham Lincoln ordered a massive blockade. By 1863, it had largely succeeded in cutting off nearly every major port along 3,500 miles of Confederate coastline. The blockade had a devastating effect on the South's economy, which relied heavily on selling agricultural products, like cotton, abroad. The Confederates built a very modest navy from scratch, and although some vessels became successful commerce raiders, it was nowhere near large or strong enough to break the blockade.By 1863, the Confederates were desperate to end the blockade, going so far as to offer bounties for the destruction of blockading Union ships. They were forced to develop revolutionary new designs in an attempt to make up for their shortcomings. Horace Lawson Hunley, a former deputy collector of customs in New Orleans and state legislator in Louisiana, recognized the importance of breaking the blockade early in the war. In 1862, he and a small team built a small submarine called the Pioneer in New Orleans, but they were forced to destroy it when Union forces captured the city. A second attempt, the American Diver, was built in Mobile, Alabama, but sank while being towed. Finally, in July 1863, Hunley successfully launched his third submarine, which would eventually be named after him. The sub was made of iron and had the shape of a cigar with the front and end sections wedged. It was nearly 40 feet long and only 4.3 feet high. It was powered entirely by hand, with seven men continuously cranking levers to move the propeller, while the commander steered and operated pumps for the two ballast tanks. Two small conning towers containing hatches were on either end of the sub.After a successful demonstration, it was hurriedly sent by rail to Charleston in August, where the man in charge of the city's defense, Gen. P.G.T. Beauregard, wanted to use it immediately. Confederate defeats at Gettysburg and Vicksburg had increased the need for an end to the blockade.But the submarine wasn't ready. By October, it had sunk twice during training missions, killing 13 men, including Hunley himself. Beauregard began to lose confidence. "I can have nothing more to do with that submarine boat," he declared. "It is more dangerous to those who use it than the enemy." But Beauregard was convinced the sub could still work by Lt. George Dixon, who raised a new crew and became the sub's commander.After its second sinking, the Hunley was forbidden from completely submerging. The plan changed from towing an explosive device under a Union ship to using a spar torpedo. The torpedo, a 16-foot pole with a 135-pound explosive at the end of it, was attached to the lower bow at a 45-degree angle, and would be detonated on contact or by a trigger-pulled device. After months of training, Dixon and his men were ready and waiting for a night with good weather. Their moment came on February 17. They left their base on Sullivan's Island and began their attack on the USS Housatonic at 8:45 p.m. The small-arms fire failed to stop the Hunley, and its torpedo detonated shortly after it made contact near the rear of the sloop. The massive explosion tore a huge hole in the ship and instantly killed five sailors. Within five minutes, the Housatonic sank. The rest of the crew survived by escaping in two lifeboats or by climbing the masts, which remained above the water, until they could be rescued. The crew of the Hunley were not so lucky. Eyewitnesses claimed that lights signaling a successful operation could be seen from the submarine. However, the sub never returned to Sullivan's Island. The Confederates never attempted a similar attack, the Union blockade was never broken, and the war ended 15 months later. The Hunley was not seen again for 131 years, when a search party found it in 1995. It was raised in 2000 and placed in a tank at the Warren Lasch Conservation Center, where it is on display. The cause of Hunley's sinking has never been definitively established. In 2017, a team from Duke University led by Rachel M. Lance, a biomedical engineer and blast-injury specialist, released a study arguing that the crew likely died instantly from air-blast trauma.Lance, who wrote a book about her research, concludes that the pressure inside the sub from the blast "put each member of the Hunley crew at a 95% risk of immediate, severe pulmonary trauma." The crew's skeletons were all found at their duty stations, with no signs of physical injuries, and not near the hatches, which were closed, suggesting there was no attempt to escape. There was also no damage to the hull that is believed to have caused flooding. The Hunley's final resting place was also almost 1,000 feet farther out to sea than the wreck of the Housatonic, suggesting the submarine drifted with the current before sinking. The H.L. Hunley was the first submarine to successfully sink an enemy warship, a feat that would not happen again until World War I.


India, Singapore navies sign submarine rescue pact

The Indian Navy and the Republic Singapore Navy (RSN) have signed a bilateral submarine rescue agreement, establishing mutual underwater emergency assistance between the two services. The agreement, which is known as the submarine rescue support and co-operation implementing arrangement, was signed at the fifth iteration of the India-Singapore defence minister’s dialogue that was held via video conference on 20 January. “The submarine rescue support and co-operation implementing arrangement will allow both navies to extend submarine rescue assistance to each other as well as conduct bilateral rescue exercises and familiarisation visits to enhance interoperability and proficiency in submarine rescue operations”, said Singapore’s defence minister, Ng Eng Hen, in his remarks on the pact. The RSN currently operates a fleet of two Archer-class and two Challenger-class diesel-electric submarines and is anticipating the delivery of four new Invincible (Type 218SG) boats from Germany. The service also operates the 84 m submarine rescue ship, Swift Rescue , which is capable of conducting intervention, and hyperbaric rescue operations. Meanwhile, the Indian Navy operates four submarine classes, and one 70 m submarine rescue vessel, Nireekshak (15), which is equipped with a six-man recompression and can accommodate up to two deep-submergence rescue vehicles (DSRVs). In 2016 the Indian Navy signed a contract for two DSAR-650L DSRVs with JFD, and the first unit was delivered in 2018. Besides the submarine rescue agreement, India and Singapore have also agreed to step up military co-operation, including in the areas of cyber defence and humanitarian assistance and disaster relief (HADR) operations.


Submarines: Chinese Breath Easier

?February 3, 2021: At the end of 2020 China revealed its new individual SEIE (Submarine Escape Immersion Equipment) suit, This item allows submarine crew to escape from a submarine disabled at shallow depths of up to 183 meters (600 feet). The Chinese SEIE is based on the British SEIE design developed in the 1960s and regularly updated since then, and widely used in Western navies. The SEIE was an improvement on the American developed Momsen Lung from the 1930s and the later 1960s Steinke Hood. These two devices provided escaping submarine crew with an air breathing system that minimized decompression sickness. While these two breathing devices worked, they did not protect escaping submarine crew from freezing to death if they were surfacing in anything but tropical waters. The SEIE incorporated a thermal suit and individual life raft that automatically inflated when the sailor reached the surface. The SEIE was augmented by existing SRVs (Submarine Rescue Vehicles) that had been around in one form or another since the 1930s. China was ahead of Russia when it came to submarine rescue equipment, and since the 1970s has adopted British gear to equip their submarines and submarine rescue ships that carry SRVs, decompression chambers and related submarine support equipment. These ships spend most of their time serving as “submarine tenders” that supply submarines at sea with needed supplies and emergency services. One of the more extreme emergencies is a disabled sub on the ocean floor with survivors inside. Russia neglected its submarine rescue capability until the August 2000 disaster that wrecked the five-year-old pride of the Northern Fleet, the 14,000-ton nuclear submarine Kursk. Explosions sank the Kursk and it came to rest on the sea floor at a depth of 108 meters (354 feet). Some of the Kursk crew who survived the initial disaster died inside the sub after their air ran out because Russia had no equipment available to detect and rescue them. The Kursk was equipped with an automatic locating buoy that would go to the surface automatically if the sub sank. The buoy was disabled duringan earlier operation and not repaired. Same problem with the two SRVs the Russian Navy had. Both had been sidelined for repairs that the naval budget did not have money for. As a result it took too long to find the Kursk, which was sunk when one of its own torpedoes exploded. Only 23 of 118 crew survived. They were all in one compartment that only had air for about six hours, and no access to other equipment that would enable them to get to the surface alive. If the location buoy was working and at least one of the nearby DRSVs were in working order, the 23 surviving Kursk crew could have been rescued. The Kursk disaster was a major scandal for Russia and forced them to do what China had done in the 1970s, obtain the latest submarine rescue equipment and keep it operational. Russia chose the British SRV rescue sub because Western firms pioneered the development of this equipment and were the foremost manufacturers. Western firms also established international standards in this area. Back in 2008, NATO successfully completed tests of the NATO SRV. This $95 million SRV1 is a deep-water rescue device that can be airlifted to anywhere in the world on short notice, fit on the deck of at least 140 identified ships, and mate with the escape hatches on most of the worlds’ submarines. The SRV1 has a crew of three and can carry up to 15 men at a time to the surface. It can go down once every four hours. This allows time to deal with decompression, battery recharging, and maintenance before each trip down. The two Russian SRVs were in need of repairs because they were used regularly for supporting espionage and naval commando training rather than submarine rescue. The SRV1 system is shipped in eleven waterproof cargo containers that can be flown by military or civilian cargo aircraft. Including flight time, set up time on the ship, and movement time to the site of the distressed submarine, the NATO SRV should be able to get where it is needed and have the SRV in the water within 72 hours. The SRV itself is 10 meters (31 feet) long, weighs 27 tons, and can go as deep as 1,000 meters (3,000 feet), which is the maximum depth for most submarines. Britain, Norway, and France cooperated to design and build SRV1. The Americans built a similar system, providing two rescue systems to deal with any of the several hundred subs in service. The NATO SRV is based in Clyde, Scotland and is managed by the UK Ministry of Defense. After 2000 Russia established links with NATO that included sharing undersea rescue capabilities. This was first used in 2005 when an unmanned British minisub was flown Pacific coast in the Russian northeast. Within six hours of landing to work, the minisub had cut free a small Russian rescue sub. This allowed the trapped sub and its crew of six to come to the surface. The Russian sub had gotten snagged in abandoned fishing nets three days earlier. The United States also flew out two minisubs, but the British got there first and were aided by some American transport troops who had already arrived. The Russians thanked the British and other nations who had rushed assistance to the remote area. Russia also decided to buy two of the minisubs that Britain used. These minisubs are used for all sorts of underwater work and cost about a million dollars each. Quickly calling in foreign assistance was a major change in Russian Navy practice. The navy was under tremendous pressure to ask for foreign assistance after they refused to do so in 2000 when the Kursk went down. The 2005 rescue was a direct result of the 2003 agreement between Russia and NATO to instantly cooperate if anyone's submarines went down and quick rescue attempts were needed. This agreement was a direct result of what happened when the Russian Kursk three years earlier. Back then NATO nations immediately offered rescue ships but the Russians dithered and the Kursk sailors who survived the initial disaster died. The agreement meant more regular transfer of information on who has what submarine rescue capabilities as well as rescue exercises between NATO navies and Russia. Over half the submarines in European navies belong to Russia, including most of the nuclear subs. China began developing its own SRVs in the 1970s using Western SRVs as a model. The first of four Type 7103 DSRVs entered service in 1987 and all underwent refurbishment in the mid-1990s. While similar to Western SRVs the Chinese 7103s lack several features common in Western models. As a result, a new generation of SRVs are being developed. China has not had a Kursk-level disaster to prompt them to join existing international submarine rescue organizations. One reason for the lack of Chinese submarine disasters is that China does not operate its submarines as frequently as Western navies or as carelessly as the Russians.


China Navy tests of individual Submarine Escape Immersion Equipment

According to information published by the Chinese MoD (Department of Defense) on January 4, 2021, a new individual Submarine Escape Immersion Equipment (SEIE) has completed the combat performance test in the waters of a sea area of the East China Sea recently, indicating that the PLA Navy submariners' self-rescue and escape capabilities have reached the advanced international lThis new individual equipment is developed by the Special Medical Center of the PLA Naval Medical University. It comprises four components, including a fast floating escape suit, hood inflation system, escape suit detection device, and hood inflation detection device. Owing to the lightweight, wear-resistant, waterproof, and anti-aging new materials, and the design of the inner thermal liner and the individual life raft, the new SEIE is more convenient to use and provides better protection for the submariner on keeping warm and reaching for surface rescue. Fast ascent and escape is a development direction widely recognized by the world for self-rescue and escape of submariners. The new SEIE takes into account two submarine escape modes, including rapid ascent escape and depressurized escape, which can be applied in various types of submarines of the PLA Navy.
In the event of a submarine emergency, with the support of the one-person escape cabin onboard, the new SEIE allows survivors to quickly ascend and escape at depths down to 200 meters. It can also achieve a depressurized escape at depths down to 120 meters in combination with the existing depressurized escape breathing device.


Russia's Mike-class Submarine: Technological Wonder (Safety Nightmare)

K-278 was a unique boat that served well until it made a terrible fate. The only model of its class, the K-278 Komsomolets, or what many refer to as the Mike-class, was intended as a testbed for Soviet fourth-generation submarines. Instead, it emerged as a potent SSN in its own right—albeit one with a deeply tragic fate. By the late 1960’s, the Soviet Navy was enmeshed in a procurement search for a new design platform to guide the next generation of its nuclear-powered attack submarines. In 1974, Rubin Design Bureau introduced a submarine that seemed to excel by every performance metric that mattered to the Soviet shipbuilding industry. The Project-685 K-278 Komsomolets was known in the west by its North Atlantic Treaty Organization reporting name as the first Mike-class submarine. It was fast, packed a punch, and broke military submarine deep-diving records. Komsomolets’ inner hull was made from titanium, a 1960’s Soviet design innovation that facilitated greater dive depths and potentially faster speeds. However, titanium is also highly expensive and notoriously difficult to work with, requiring special treatment in argon-infused warehouses. Nonetheless, Komsomolets’ titanium construction allowed it to withstand an impressive 1,500 psi of pressure—in 1984, the submarine reached a then-diving record of 3,350 feet. But Komsomolets’ innovations didn’t stop there. The submarine was armed with secretive Shkval supercavitating torpedoes that employed a novel propulsion system to travel at a maximum speed of up to 200 knots or 370 kilometers per hour. The submarine itself could travel up to thirty knots, a fairly typical speed for flagship Soviet submarine lines, and featured a displacement of up to 8,000 tons. In addition, Komsomolets featured the standard-issue six 533-millimeter torpedo tubes found across numerous other submarine lines. As technically impressive as the Komsomolets was, it also perpetuated the unfortunate Soviet trend of haphazard radiation safeguards and what is often described as a weak submarine safety culture. Komsomolets was commissioned in 1983 and tasked with running a series of field tests to generate performance data for Soviet scientists and engineers. Disaster struck in 1989. While submerged over 1,000 meters deep in the Sea of Norway, a fire broke in a compartment near Komsomolets’ aft. According to investigations into the incident, a ballast malfunction apparently caused an air rupture that led to an oil leak. The oil then made contact with a running turbine, causing a conflagration that wrought havoc across the submarine’s control systems. The fire and resulting smoke could not be effectively contained, causing a raft of cascading electrical malfunctions throughout the vessel. Five of the crew, including Captain Evgeny Vanin, attempted to eject through the designated escape pod. Shortly after rising to the surface, the pod catastrophically malfunctioned— only one escaped the hatch, while Captain Vanin and three others were either killed instantly or incapacitated. Komsomolets surfaced, but compressed air leaks continued to spread the fire. The submarine sank several hours later, sustaining severe structural damage. The government promptly responded by dispatching rescue aircraft, but the effort proved ineffective. Of the sixty-nine-strong crew that had successfully abandoned ship, forty-two proceeded to die from hypothermia in the freezing waters of the Barents Sea. Komsomolets, or what is left of it, sits on the Barents Sea floor at a depth of 1,680 meters. Recent investigations have found that the site remains radioactive, but the threat of further environmental contamination is reportedly minimal.


How Israel's Submarine Scandal Was Buried

As early as 2009, an inquiry was held into possible corruption in Israel's bid to buy submarines from Germany. The secret probe, triggered by an anonymous whistle-blower, took testimony from high-ranking officials about signs of bribery – but the powers-that-be covered it up. Every criminal affair has a seminal moment, a kind of opening salvo for the unsavory plot. It’s the moment when the interests of the protagonists intersect, a moment after which there is no turning back. The affair of Israel’s purchase of submarines and patrol boats from Germany, known as Case 3000, had a moment like that. According to the state prosecution, it took place in 2009, in two meetings, held in the bureau of the finance minister at the time, Yuval Steinitz, and in the office of the then-commander of the navy, Vice Admiral Eliezer Marom. Marom was in the forefront of a group that wanted to replace the Israeli agent of the German shipbuilder ThyssenKrupp, the middleman between Israel and Germany in the submarine deal. For years that role had been played by Brig. Gen. (res.) Yeshayahu “Shaike” Bareket. Marom and his group wanted to replace Bareket with businessman Miki Ganor.Bareket was a senior intelligence officer in the Israel Air force and former Israel Defense Forces’ attaché in Bonn. Against the background of the ties he forged with Germany’s leaders, he had acted as the broker in Israeli-German submarine deals for two decades. Ganor was mainly involved in real estate at time, in the European market. Why was it so urgent for the Israeli group to influence the choice of a broker in the talks with Germany? What led them to “parachute” an entrepreneur from the private market into the job? According to Israel’s State Prosecutors Office, the answer is clear: As an agent, Ganor would make a killing of millions. The lobbying on his behalf didn’t derive from charitable motives. Ganor was allegedly required to repay the move with bribe money.Looking back, it’s hard not to imagine what would have happened if someone had intervened at that stage and blocked Ganor’s peculiar appointment. In that case, perhaps, there would have been no submarines affair. If the security authorities had asked themselves about Ganor and probed the unusual lobbying on his behalf – the chain of criminal activity could have been broken. It now turns out that someone did intervene. And that the authorities did ask questions. And that they even investigated. Yet in the end, they whitewashed or ignored what they found.Toward the end of 2009, an unsigned letter arrived in the office of the Defense Ministry’s ombudsman. “We in the corps are very uncomfortable with the behavior of the commander of the navy,” the anonymous writer stated. “Vice Admiral Marom organized a meeting with the finance minister. The meeting was attended by a businessman [Ganor] who is well acquainted with the finance minister, as he paid for office space for his use in the [Likud party] primary. He is acting as the shipbuilder’s representative, but at the same time also as the [navy] commander’s representative and friend. Is this proper? What’s behind this?” That wasn’t the only letter. Two more letters followed, both also anonymous. They showed a keen grasp of what was going on behind the scenes: the planning of a bribery deal involving senior Israeli figures. Ganor was intended to be its executor. Marom and Ganor knew each other from the period they served together in the navy. It was no more than a basic acquaintanceship, but in 2009 the relations between them warmed up. According to the prosecution, Marom was approached at that time by another navy veteran, Rear Admiral (res.) Avriel Bar Yosef. According to the state prosecution, Bar Yosef, who coordinated the activity of the Knesset’s Foreign Affairs and Defense Committee at the time, mentioned Ganor’s possible appointment to Marom, who acceded and set up a meeting between Ganor and the general manager of the German shipyard, Walter Freitag. Ganor flew to Germany, but Freitag told him that the corporation already had a representative in Israel. Unfazed, the intended broker asked to remain behind with Freitag for a private conversation. Not long after that meeting, when Freitag visited Israel, the operation to replace Bareket was already in high gear. Marom took advantage of the visit to press aggressively for Ganor. He invited Ganor to an official meeting that he gave for the Thyssenkrupp executive with the top brass of the Israel Navy, as well as to a meeting with Freitag that Marom held in his office. It was aimed at showing the German guest that Ganor had the support of the navy commander. Freitag apparently got the message. Within a few weeks, the Germans launched negotiations with Ganor and finally appointed him their representative. That job would ultimately enrich him by more than 10 million euros – and, it’s suspected, not only him. According to the state prosecution, in 2014, Ganor began the transfer of more than a half-million shekels (about $130,000, in 2014) to Marom, in installments. The seeds that had been planted five years earlier were beginning to bear fruit. Back to 2009. The anonymous letter warning about the connection between Marom and Ganor didn’t remain in the ombudsman’s office. It was forwarded to the Defense Ministry Security Authority, known by the Hebrew acronym Malmab – the secretive body charged with ensuring that nothing is amiss in the ministry, the military industries and bodies associated with Israel’s Atomic Energy Commission. Malmab provides these units with physical security, information security and protection against cyberattacks, and instigates investigations into instances of possible corruption and leaks of classified material. Malmab’s staff are empowered to conduct criminal investigations. The suspects might be arms merchants, but by the same token they might be senior civil servants. The director of Malmab at the time was Amir Kain, a confidant of Gabi Ashkenazi, then the IDF chief of staff (and today foreign minister). Prior to his appointment as army chief, when Ashkenazi served as director general of the Defense Ministry, Kain was his personal aide. When the Harpaz affair (involving a feud between Ashkenazi and Ehud Barak, then defense minister) erupted in 2010, Kain was questioned on suspicion that he had given information to Ashkenazi about the Shin Bet security service’s intention to track down individuals who leaked details from deliberations about the Iranian nuclear project. The case against Kain was closed. When the first letter landed on Kain’s desk, he updated the Military Police Criminal Investigation Division. In response, the latter asked Malmab to conduct a preliminary examination of the material, in order to decide whether there was anything in the allegations that would necessitate an investigation of Vice Admiral Marom. Kain entrusted the inquiry to a senior member of Malmab’s investigations unit, Noah Nadler. The code name chosen for the inquiry was “Yellow Submarine.”While Nadler was gathering information, Kain received another anonymous letter, which reiterated most of the allegations concerning Ganor and Marom in the first letter, while supplementing the warnings with a few bombshell comments: “There’s a feeling that this connection of Mr. Ganor, a rich man who deals in real estate and spends a lot of time with the navy commander, is dubious, and both of them know why… To every question that any of us ask the navy commander, [about] who this person is and what’s going on, he responds sharply and threateningly. The navy is dear to us, and it’s worth looking into what’s behind the facts.” At this point, something unusual happened: Instead of forwarding the new letter to the Military Police Criminal Investigation Division and to Malmab’s Nadler, Kain forwarded it to Chief of Staff Ashkenazi. Ashkenazi had appointed Marom commander of the navy, and the two enjoyed good relations. Earlier that year, Marom had been spotted in a Tel Aviv strip club and had gotten into trouble by providing apparently inaccurate information about what he did and how long he spent there. Female MKs and women’s organizations demanded he be removed from his position, but the chief of staff decided to make do with a notation in his personal file. When Kain forwarded the second letter to Ashkenazi, he added the following remark: “Gabi, this is a copy for you. I didn’t forward this letter [to Military Police Investigations]. Only the earlier one. It’s my understanding that the Military Police updated the military advocate general [Maj. Gen. Avichai Mendelblit, today the attorney general]. I arranged with the investigators for them not to send anything to MPI before they see me (and I, you)… Keep or destroy this at your discretion. Amir.” According to the letter of the anonymous whistle-blower, ‘There’s a feeling that this connection of Mr. Ganor, a rich man who deals in real estate and spends a lot of time with the navy commander, is dubious, and both of them know why...’Ashkenazi responded by writing in his own hand: “Amir, in my opinion, an open meeting… and organizing a meeting for the finance minister, is not a problematic act.” The commander of the navy, which is the client in the submarines deal, is pressing to appoint as middleman a real estate entrepreneur, who will rake in millions on the deal, and the chief of staff doesn’t see a basis for looking into the matter? Kain understood well that it would be best if as few people as possible saw Ashkenazi’s reply. When he gave the letter to his secretary for filing, he asked her to blur any traces of the chief of staff. “Gabi Ashkenazi’s comment should not be scanned. To be kept in the investigations memoranda file.” In the meantime, Nadler, from Malmab’s investigations department, met with three individuals: the head of the Defense Ministry’s procurement directorate, Aharon Marmarush; his deputy, Yossi Amir; and the ousted representative of the German shipyard, Shaike Bareket. Amir made it clear to the investigator that big money was involved. He related that Israel’s political leadership was seriously considering the purchase in the near future of submarines at a cost of billions of shekels. “We only learned now about Ganor’s appointment,” Amir admitted to Nadler. “It is not an official position and it’s possible to live without it. There is no need for it.” Here he touched on the very heart of the submarines affair: the fact that between the governments there was a broker who was pocketing fat commissions and who, it was alleged, may have corrupted officers and officials along the way. Marmarush told Nadler that in his view, Bareket’s ouster and Ganor’s appointment were evidence of “someone’s vested interest.” Nadler asked whether Ganor could have been appointed as the agent for the German corporation without the support of the navy commander or some other figure of influence. “The formal answer is yes, and the practical one is no,” Marmarush replied. In the informal part of the conversation, Marmarush and Amir shared with Nadler the suspicions they harbored. “We’re talking about a project worth more than one billion euros, and there’s a rumor that the agent is getting one percent of the deal’s value. It can’t be ruled out that moneys from that sum were promised to certain figures who support Ganor’s appointment.” Moreover, the two told Nadler, “the navy commander will be concluding his term in one to two years, and support for the right person can advance his personal affairs.” That was only speculation, but of a sort that must be examined. In his meeting with the ousted middleman, Bareket, Malmab investigator Nadler heard about his network of connections in Israel, Germany and the United States. Bareket told him how he had become a broker in defense transactions following a request from the ministry’s procurement directorate back in 1985. Nadler asked Bareket whether he had worked under contract during this period and had been paid for his services. Nadler noted later that Bareket “responded angrily that he is not ready to talk about that and that he is not obligated to make a report.”Bareket told Nadler that Vice Admiral Marom had broken off ties with him one day, with no explanation. He described the dinner that was held for Freitag, the German shipyard executive, at which the latter was introduced to Ganor. Bareket, who was also at the dinner, had asked Ganor about his relations with navy personnel. Ganor, he said, replied simply that he was a friend of the navy commander. After the dinner, Marom accompanied Freitag and Ganor to a bar. The following day Bareket had met with Freitag and heard from him about the evening with Ganor and Marom. According to Bareket, Freitag related that Ganor had made it clear to him unequivocally that if he were not appointed as the new Israeli agent, there would be no project with the shipyard, because the navy commander would not work with any other broker. To round things off, Bareket maintained that a source – whom he refused to name – told him, “For sure, Chayni [Marom’s nickname] will get a lot of money.”At this stage, it appeared that the material collected warranted an expansion of the examination. It was almost obligatory. Senior officials from the Defense Ministry Procurement Directorate had warned about the possibility that Marom was out to pad his post-navy life, Bareket had supplied explosive testimony, and there was also something else: Malmab’s Nadler discovered that neither Bareket nor Ganor had a permit from the Defense Ministry to act as agents – something that should have raised suspicions especially with respect to the real estate man who had suddenly popped up. After all, Malmab’s principal task is to ensure that sensitive information does not fall into the hand of unauthorized individuals. Ganor was an unauthorized individual.But the warning lights didn’t flash, and the inquiry was concluded. “It’s scandalous,” said a former senior official from Malmab, who was apprised of the details.No one took testimony from Marom and Ganor. Not about the ties between them, not about the actions Maron undertook on Ganor’s behalf – nor about the fact that Ganor was privy to security secrets without a permit.Nadler signed off with a feeble bottom line. He stated that on the basis of the material he had collected during his examination of the events – just three testimonies – there was no evidence justifying a more formal investigation. At the same time, he added, “On the face of it, there is something amiss about the way things were handled, and the possibility exists that behind the overt actions lurk intentions and facts that at this stage have not yet been revealed.” He recommended sending the materials on to the commander of the Military Police’s investigations unit, who “will decide and act on the matter as required.” Kain, however, forwarded the findings of the examination to Ashkenazi, as he’d promised. In a properly run world, Malmab would have deepened the probe, and afterward the chief of staff and the military advocate general, Mendelblit, would have pushed the Military Police to get to the very bottom of the matter. “Ashkenazi should have called Mendelblit and ordered him to send in the Military Police, full steam ahead, in order to verify or refute suspicions,” the head of the investigations unit in Malmab, Gadi Waterman, said afterward. “If they didn’t do that, then the chief of staff and the military advocate general should be hanged from a tree.” He added that it is inconceivable that Mendelblit didn’t know, and if by chance he didn’t know, that is “the screw-up of screw-ups.” In fact, the Military Police never launched any such investigation. Despite the information in the hands of the defense establishment, no one took testimony from Marom and Ganor. Not about the ties between them, not about the actions Maron undertook on Ganor’s behalf – nor about the fact that Ganor was privy to security secrets without a permit. In the meantime, the persistent letter writer sent another anonymous missive, this time to the state comptroller. In it he again noted the unacceptable connection between Marom and Ganor. “It didn’t happen in the Third World, it happened here, among us,” he wrote. “I served for many years in the navy, in missile boat units and at headquarters. Not long ago I got a phone call from a person I didn’t know. His name is Miki Ganor. He offered me work at a tempting salary… He claimed to have established a company for security matters, for which he needed people like me. ‘You see that the Germans appointed me their representative here, this is an opportunity for you. No one will lose and the state also benefits.’ I thanked him and added that I had previous commitments. It turns out that my friends are very uneasy about what is happening in the navy in this matter, and that the money involved has an important role in the way this Ganor was appointed. The state is important to us. The behavior of the navy commander is exploitation of the power of authority and borders on the expression ‘hon-shilton’ [capital (influencing) government]!” Instead of looking into the issue himself, the state comptroller passed the letter along into the wrong hands – those of Malmab head Kain. Long weeks passed without a response. The state comptroller asked for an update and Kain finally replied, “Even though this is an anonymous complaint, I asked Malmab’s investigations unit to conduct a preliminary examination to see if there is any substance to it. From the results of the preliminary investigation no evidence was found to raise suspicion of a criminal offense that would justify an investigation. Because the person involved is the commander of a major arm [of the IDF], I decided to forward the letter to the chief of staff for his perusal, and for him to handle it according to his judgment. I also updated the director general of the Defense Ministry about my decision.” In May 2010, indeed, Kain met with Defense Ministry director general Udi Shani. In the meeting Kain effectively submitted to Shani the death certificate of the “Yellow Submarine” investigation. According to the summation of the discussion between the two senior officials, Kain explained to the director general that “the chief of staff was apprised of the findings. The chief of staff dealt with the matter and spoke with the commander of the navy, and from his point of view the subject is closed.” Kain himself added that he “[doesn’t] intend to deal with the subject anymore.” It was another seven years before the submarines affair resurfaced. When Lahav 433, the Israel Police’s anticorruption unit, launched an investigation into the suspicion that bribes had been paid in connection with the purchase of submarines from the German shipyard, both Ganor and Marom were among those detained for questioning. Ganor decided to turn state’s evidence. He related the steps Marom had taken to promote his appointment as the Israeli representative of ThyssenKrupp, and how he had paid him a bribe in return. Ganor then retracted his agreement with the state prosecution. A judicial source observed recently that Ganor’s turnabout had caused evidentiary difficulties in the bribery case against Marom, and that it was too early to say whether the investigation would result in an indictment. From the investigators’ point of view, it appeared that there was more than a grain of truth in the information contained in the anonymous letters. The meetings in the office of the navy commander and in the bureau of Finance Minister Steinitz were indeed meant to showcase Ganor’s network of connections to the Germans. Marom’s activity on Ganor’s behalf were intensive. After Marom retired, he received hundreds of thousands of shekels from Ganor. Ganor also apparently donated to Steinitz’s Likud primary campaign in 2012, through fictitious third parties. During their investigation, the police took testimony from cabinet ministers and senior figures in the defense establishment. Kain, the Malmab director who left his post in 2015, was summoned for a brief interrogation and stated that he didn’t remember the examination of the process by which Bareket was replaced. Ashkenazi’s turn came in July 2017. The former chief of staff testified that he had spoken with Marom several times ahead of the start of the investigation, had reassured him that all would be well and hoped that “the truth will come to light.” Asked by the investigators what he knew about Ganor’s appointment in 2009, the man who is today Israel’s foreign minister suffered an attack of amnesia. Ashkenazi was asked whether he was aware of the relations between Marom and Ganor. He replied that he didn’t remember. Asked about the replacement of Bareket, he replied that he “did not know a thing about the subject.” When told that the evidentiary material indicated that Marom was involved in getting the agent replaced, Ashkenazi stuck to the same line: “I don’t recall that I knew.” He told the investigators that if they had different information, they were invited to refresh his memory. “At a certain stage, the cards were revealed to him,” a knowledgeable source told Haaretz. But even when shown the anonymous complaint, Ashkenazi replied that he didn’t remember, and the same when he was reminded that Malmab had launched an inquiry and referred the subject to him for handling. “If it had reached me,” he told the investigators, “I would have referred it to the navy commander. It’s possible that in this case, too, I referred it to him for his response, which I found satisfactory.” When asked it if it was customary for the chief of staff to intervene in examining complaints against senior officers, Ashkenazi replied that Malmab is an independent body, and in any event he doesn’t recall that he intervened. He also professed not remembering that the Malmab director was in touch with him about the subject and sent him the findings of the examination. As a rule, Ashkenazi observed to the investigators, anonymous letters are a common tool for settling personal accounts. The investigators wondered whether the chief of staff had known that the Marom was in possession of the contract between Ganor and ThyssenKrupp, including details of the commission the middleman would receive. Ashkenazi replied in the negative. The investigators wanted to know whether involvement of this sort by an IDF officer in procurement processes was customary. “No,” the former chief of staff said, “the IDF should not intervene in the appointment of agents. It’s precisely for that reason that the civilian system – the Defense Ministry – was established.” At the beginning of 2019, Ashkenazi joined the leadership of the Kahol Lavan party. At the time, so-called Case 3000 was a weapon in the hands of the party’s leaders against Netanyahu. Ashkenazi, who as chief of staff in 2011 had opposed the acquisition of a sixth submarine for Israel’s fleet, spearheaded the campaign. Like party leader Benny Gantz, he too undertook to establish, immediately after the election, a state commission of inquiry to examine the submarines affair. “Submarines are the holy of holies of Israel’s security,” he reiterated on more than one occasion. If he had acted determinedly in real time, and pushed the gatekeepers to get to the root of the matter, this affair would have been dead in the water, a decade ago. A spokesperson for Gabi Ashkenazi stated: “The minister previously provided the various investigative bodies with an account concerning the affair of the naval craft, during which he was also asked about the comportment of the commander of the navy at the time and Malmab’s findings in the wake of the anonymous letters. Minister Ashkenazi does not recall any complaint that arose concerning the issue of the changing of the [ThyssenKrupp] agents.” Amir Kain declined to comment. Haim Sasson, former head of Military Police Criminal Investigation Division, didn’t remember the anonymous complaints, but said that in cases of such criticism being leveled against senior officers, they are supposed to be brought to the attention of the military advocate general. The spokesperson of the Justice Ministry stated that to the best of Avichai Mendelblit’s recollection, the subject did not arrive on his desk. Eliezer Marom denies the suspicions against him, maintaining that he received money from Miki Ganor for consultation services – legitimately. From his perspective, he worked for Ganor’s appointment as ThyssenKrupp’s representative in Israel for reasons of state, because Ganor had been a navy man, the commander of a missile boat and an engineer.C


The Saga Of This Long-Busted Submarine

Canada's four Victoria class submarines have been plagued with problems and haven't gone on an operational cruise in two years. The Royal Canadian Navy's Victoria class diesel-electric submarine HMCS Corner Brook will be out of commission until at least next summer after a recent leak caused damage to the boat, which has already been undergoing maintenance for some six years. The plight of the Corner Brook in many ways reflects the at best disappointing service career of all four of the Victorias, which Canada first agreed to acquire second-hand from the United Kingdom more than two decades ago and that have spent far more time laid up than at sea. The Canadian Department of Defense confirmed the leak aboard Corner Brook, which is presently at Victoria Shipyards in British Columbia, on Dec. 21, 2020. The incident occurred during a test back in March by personnel from Babcock Canada, which has been under contract to support the Victoria class submarines since 2008. "During the test, the normal procedure for draining the tank was not followed and a leak was subsequently discovered," Jessica Lamirande, a spokesperson for the Canadian Department of Defense, told The Canadian Press. “The tank was immediately depressurized and further testing was put on hold pending an investigation,” Lamirande said in a separate statement to CTV News. "Babcock Canada Inc. conducted an internal investigation to determine the root causes of the incident, modified its procedural controls, and has since resumed tank pressure testing." As it stands now, the Corner Brook isn't scheduled to return to service until at least June 2021. This is more than a year longer than the submarine's overhaul, which began in 2014, was originally supposed to take. The boat had already been largely out of commission after hitting the seabed off in the Nootka Sound during an exercise off Vancouver Island in the Pacific Ocean in 2011. An official inquiry subsequently blamed the incident on human error and there were concerns that the accident might have damaged the submarine's pressure hull beyond repair. In April 2019, a fire also broke out on Corner Brook as it continued to undergo maintenance at Victoria Shipyards, but it was thankfully extinguished quickly. Unfortunately, as particularly hapless as Corner Brook is, the state of the other Royal Canadian Navy's other three Victoria class boats, the only submarines presently in Canadian service, already woefully small number for a major navy, is not much better. Their entire history has been an outright saga. The U.K. Royal Navy had first commissioned all four of these boats between 1990 and 1993, but retired them in 1994 after it was decided that the service would shift to only operating nuclear-powered types. U.K. authorities had also tried, unsuccessfully, to sell them to Pakistan. The United Kingdom agreed to transfer the submarines, then known as the Upholder class, to Canada as part of a lease-to-buy plan in 1998. Under the deal, Canadian authorities would pay $427 million for the boats over eight years, at which point the U.K. government would officially sell them for exactly one British pound. The arrangement was also tied to a tangential agreement for the U.K. armed forces to retain access to various Canadian military bases. The first boat, the ex-HMS Unseen, subsequently renamed HMCS Victoria, was formally commissioned in the Royal Canadian Navy in 2000. The ex-HMS Unicorn and ex-HMS Ursula, which became the HMCS Windsor and HMCS Corner Brook, respectively, followed in 2003.The last boat, the ex-HMS Upholder, which would become the HMCS Chicoutimi, caught fire after seawater entered the conning tower while sailing from the United Kingdom to Canada in 2004. A Canadian sailor died and eight more suffered injuries in the accident. A heavy-lift vessel eventually brought the stricken submarine to Canada in 2005 and authorities in that country finally decided to repair it in 2009. Ultimately, it was not formally commissioned into Canadian Navy service until 2015. The Canadian acquisition plan also included major overhauls and refits for all four boats, which had been in mothballs for years before the purchase, at the cost of an additional $98 million in total. In the process, the boats lost their ability to fire Harpoon anti-ship missiles from their six torpedo tubes, as well as their mine-laying capabilities. They did gain a new Lockheed Martin Librascope submarine fire-control system, enabling them to employ the U.S.-designed Mk 48 Mod 4 heavyweight torpedo. Those refits, as well as subsequent maintenance availabilities, have been beset by their own issues. A dent was found in Victoria's hull in 2000, which prevented the submarine from actually entering service for three years. That same submarine also suffered "catastrophic damage" to its electrical system when Royal Canadian Navy personnel attempted to install a more modern generator in 2006. There have been a host of other issues, including the discovery of dangerous sub-standard welds across all four boats, that plagued the class over the years. Victoria ultimately spent just 115 days at sea between 2000 and 2010. Corner Brook had only 81 days of sailing time between 2006 and 2008. By all accounts, all four Victoria class submarines have seen relatively limited use in the past two decades. To date, Chicoutimi holds the record for the longest cruise of any of these boats in Canadian service at 197 consecutive days, or around six months, a journey it completed in 2018. The next year, none of the Victoria class submarines made it out to sea, with all of them being in various stages of further maintenance. The plan had been to have all but the Corner Brook back in service again this year, but this was upended in part by the COVID-19 pandemic. In September, Victoria finally returned to the fleet, but at the time of writing it is still undergoing its post-maintenance shakedown. Windsor is presently scheduled to return to service early next year, but it's unclear when work on Chicoutimi will be completed. The entire future of the Victoria class submarines is very much up in the air. HMCS Victoria is set to reach the end of its stated operational lifespan in 2022 and the other boats could follow soon after. Since 2017, the Canadian government has stated that it plans to conduct a major life-extension program for these submarines, but has not yet formally authorized it. The cost of that project, which would keep the boats sailing into the late 2030s or early 2040s, is estimated to be around two billion Canadian dollars, or around $1.5 billion at the present rate of exchange. "While chronologically 20 years older, they have not been operated extensively during that time," one 2016 briefing on the then-proposed life-extension plan reportedly said. The suggestion here is that the fact that the Victoria class submarines have been pierside for decades, collectively, would make it easier to keep them in service beyond their original out-of-service date. At the same time, "while it is considered unrealistic to predict the material state of 40-year-old platforms, 20 years into the future, certain items such as the pressure hull and main motor will require additional monitoring and maintenance above the current regime, since unpredicted degradation in such areas may not be cost effective to repair and mitigate," that same briefing warned. Given the Victoria class's history, so far, it's not at all clear what kind of operational utility the boats really offer the Canadian Navy, no matter how easy or hard it may be to technically keep them in service for another two decades or so. The Canadian government has already spent more than a billion dollars in the past 20 years to keep them running at all. There have been, unsurprisingly, calls to pursue the acquisition of new submarines. All of this comes at a time when the Royal Canadian Navy is looking to modernize and improve its overall capabilities, both when operating independently and together with its allies and partners, especially fellow members of NATO. That Alliance is particularly attuned to an uptick in Russian submarine activity and the potential threats that poses, which has led to a renewed focus among its members on submarine and anti-submarine warfare. Canada also has national security interests in the Pacific, where Chinese naval capabilities, above and below the waves, are notably growing, as well as in the increasingly strategic Arctic region. Canada is already in the process of acquiring a new, highly capable class of guided-missile frigates that will significantly increase the country's naval power projection capabilities, as we at The War Zone have previously discussed. However, submarines are unique valuable assets for any modern navy, presenting entirely different kinds of challenges for potential opponents compared to surface warships and also having inherent capabilities to act as discreet intelligence, surveillance, and reconnaissance platforms. The Royal Canadian Navy definitely has a need for submarines, but attempting to keep the Victoria class operating in some fashion for years to come, after they have already spent most of the careers in various states of disrepair pier side, would seem to present increasingly diminishing returns.


Goodbye to Gosport’s iconic SETT

Yet another memorable aspect of 2020 was that the Royal Navy’s world-renowned submarine escape training tank (SETT) in Gosport closed in January. Possibly the most-iconic building in the Royal Navy, the SETT dominates the Gosport skyline. Since it became operational in 1954, it has been viewed with a sense of dread and achievement by thousands of submariners from Britain and the Commonwealth. But like all who passed through the hallowed gates of HMS Dolphin, its time in the senior service has come to an end. Submarine escape training for the Royal Navy will be carried out at the Clyde Submarine Base in Faslane, Scotland. On my visit to the SETT, I was lucky to be be accompanied by former Royal Navy Petty Officer, Alan ‘Goldie’ Goldsmith, an ex-submarine escape instructor and member of the sub-sunk parachute assistance group, or SPAG, as it was known; an elite group of submariners, who are world leaders in submarine escape. They make up the body of instructors at the SETT and the teams that parachute into the sea when a sub is lost, ready to rescue submarine crews escaping from the depths, putting into practice for real everything taught at the SETT. There is no doubt about it, the SETT is imposing. It has a distinctly foreboding feel. As military buildings go, with a way of dissuading the unwelcome, this one is right at the top of the list. The building’s purpose is simply to house a 30m tank of water. Personnel from the submarine service get into the tank via airlocks at various depths and make their way to the surface. It is a cramped and unforgiving experience and, not to put too fine a point on it, it’s dangerous. During the SETT’s operational years, a number of people have died. Just being up close to the building itself reminded me of my own escape training here at the SETT as a young submariner. The nerves, the butterflies and a genuine wonder of why I had volunteered for submarines all came flooding back! Climbing into the lift with Goldie, we made our way to the top of the tank. Coming out of the lift, the sight is quite breath-taking. The tank is essentially a very deep swimming pool, with the water temperature maintained at around 32°C. Looking down I could see the faint shimmer of the airlock doors at 9m and 18m and the two upper lids of the deepest escape chambers, side by side at the bottom, almost 30m below. Showing its age, the light blue circular walls of the tank were carrying a little rust. When in use, at the top, sits the ‘boss’, the officer in charge of the escape training operations. Behind him lies the grim reminder that this doesn’t always go as planned – the emergency decompression chamber, available to quickly take a submariner back down to depth for therapeutic recompression, to try to arrest a case of the decompression illness (the bends), where a build up gases in the blood stream and tissues of the submariner, expands on ascent, with sometimes devastating effects. Around the top of the tank, a series of ladders allows access and egress to and from the water. But of course, other than to practice surface skills, that’s not how submariners get in. They get in down there, through one of those airlock doors or the upper lids! Down at the 9m lock, Goldie and I clambered in. It was even more cramped than I remembered. A class of around ten submariners plus one instructor would escape from here. In effect a box stricture on the outside of the tank, the lock was damp and dark. In an escape, the instructor would shut the outer door and flood the lock. Think of being in tiny room that is flooding. You have no breathing equipment. No regulator. You are wearing a pair of shorts and a mask. “Take a good, deep, breath!” The instructor calls out and the first submariner takes that breath, ducks under the water and is pulled out into the tank by the instructing staff, lurking outside the hatch, and let free in the direction of the surface. It’s worth noting here that members of the instructing staff make all of their descents and ascents without diving gear. They are freedivers. Travelling up and down (all the way down, to 30m) on a breath. At the side of the 30m chambers, is a diving bell from which the member of the instructing staff work. Next stop, the 18m lock! This is deep. The adrenaline is pumping. Just getting in again all these years later, I could feel it. I would never like to even contemplate this from a stricken sub. Even in training, the water is still the master. Get it wrong, forget what the instructing staff tell you, and you are in for a bumpy ride. For real, in the darkness and cold on the open ocean, in a compartment crammed with people trying to survive, it doesn’t bear thinking about. I’m quickly taken back to my training. For the trainees that were in the 18m lock, there was no let up. The water level has crushed the air and the pressure is on. Drawing that good, deep, breath, the mask leaks a little, and I feel the panic rising, this is it. I move through the water. It is strange to be passing the legs of my fellow lambs going to the slaughter as I see the door to the lock and the instructing staff diver on the outside. Hands spin me around. I’m facing back into the lock. I am totally confused. The breath is burning in my chest, now. I feel pulling and jerking, and I am yanked backwards, out from the lock into the body of water in tank. I’m now at 18m, with no diving gear. No BCD and weight system to keep me buoyant. No regulator to keep me supplied with air. I’m in another world now. Thousands of years of evolution is screaming at me to bolt, to try to get out of the water, but the instructing staff diver, calmly floating in front of me, is holding me, jabbing my torso. Yes, breathe out, breathe out. He sees me breathe out, a steady stream, lips no wider than a pencil, as has been shouted at me, for the last few days. I’m sure that the instructing staff diver is laughing at my eyes which are now so wide that they fill my mask! Then, released, I’m racing upwards towards the surface. The air is gushing out of my lungs, like I’m vomiting gas, and the desire to hold my breath takes over. No, no, no. Do Not Hold Your Breath. Holding your breath means lung expansion injuries which gets you a ride in a Royal Navy helicopter and a nice cool resting place in the morgue at Haslar Royal Navy Hospital (as it was when I did escape training). Whoosh! I gasp air and realise that I am alive! I am now bobbing on the surface. “Okay, shipmate, over to the side.” Is that it. Don’t I get a medal for lunacy! In true Royal Navy style, the relief, the sense of pride and the sense of one-upmanship that some other poor unfortunate candidate has yet to do it, is soon taken away. With the exercise completed at 18m, it’s time for the trainee submariners to take the lift to the bottom, for the 30m escape. The access area to the two-person escape chamber, is made out as the escape compartment of a sub, cramped, with not even enough room to stand fully upright. After scaling the ladder, into the escape chamber itself, the claustrophobia is palpable. The ultimate, final destination! The hatch rim is very unforgiving on the shins and hauling myself in without whacking my head of elbows was quite a task. Inside the chamber, closing the lower hatch starts the heavy breathing. For the trainee, this is the big one. Again, I am quickly taken back to when I was in here for real. The second person in the chamber on that occasion was the instructor. With the bright orange escape suit plugged into the air supply, filling the hood, visibility is distorted and the heart pounds. Then it happens – gushing in, filling the chamber, rising up the body, the water takes over. The instructor operates the flood valve. The trainee can do nothing but face what’s about to come. As the water fills the tower, the trainee becomes bouyant in the chamber and when the water and compressed air pressure equals the water pressure, the upper lid of the chamber can be pushed open. The air leaves and water rushes in to make up the space. This whole process is very disorientating.Once having managed to get out of the chamber, the trainee is met by more freediving instructors, who make sure the trainee is clipped to the ascent wire running to the surface, and then they’re off! Thirty meters in about 13 seconds! Trying to remember everything that’s been drilled into them – breath normally in the hood. Normally! What!? Flare the legs, look up! On the surface there is a mix of elation and fear! Lying flat in the escape suit, pulled to the side by the instructing staff, the egress ladder is climbed with wobbly legs. The usual dose of shouting at the trainee ensues, Royal Navy style. Stood to attention, still in shock, the smiles beam on the face of those that can say they’ve done it!


Submarines reportedly being used for smuggling cocaine into U.S.

Central and South American drug runners are continuing to create new specialized smuggling vessels to move narcotics into the U.S., as evidenced by a sophisticated electric submersible seized earlier this month. On Nov. 5 the Colombian Navy, assisted by the U.S. Drug Enforcement Agency and local law enforcement agencies, raided an artisan boatyard near the Cucurrup River in the Choc area of Colombia. Under a makeshift roof they discovered a high-capacity narco submarine, the Colombian Navy announced on Twitter. The submarine is estimated to have cost $1.5 million to construct, according to officials. Based on the plans that were seized by Colombian authorities, had it sailed, it would have carried some six metric tons of cocaine towards the American market, valued at around $120 million. Put into perspective, most narco submarines interdicted by the U.S. Navy and Coast Guard carry around 1.6 metric tons of cocaine, worth approximately $30 to 35 million. The trend had been towards smaller payloads per trip, but the discovery of the new submarine points toward a trend reversal. Another significant difference compared to other narco-submarines is that this seized vessel is fully submersible, at least for short periods of time. Virtually all narco submarines interdicted at sea have been more correctly termed low-profile vessels (LPVs). Also known as semi-submersibles, these are craft designed to run exceptionally low in the water to avoid detection. But they cannot fully submerge. This submarine's cylindrical hull, sealed roof hatch and hydroplanes all point to some degree of submerged running. Underwater it uses batteries to power two electric motors. Ten tons of batteries give it an estimated endurance of 12 hours, which would equate to about 32 nautical miles if the submerged speed is around three knots. Clearly, even if the cruising speed is higher, an electric submersible like this cannot make the entire trip unaided. A towing ring on the nose points to the answer: the craft is designed to be towed by a larger vessel until close to its destination. It would then make the final leg on its own. Once unloaded, it would be scuttled and join the hundreds of discarded narco subs which litter the seafloor. The design is reminiscent of another rare electric narco submarine which was found in the same area in July 2017. That also had twin electric drive, four large hydroplanes and a tow ring. This suggests that the same master boat builder was behind it, or at least some common human thread. Although this vessel's design appears to have been active for at least three years, none have been interdicted at sea. This latest discovery by the Colombian Navy is a reminder that these sophisticated drug transports are still being built, inferring that spending more than $1 million is worth the effort for the traffickers. The engineer behind this latest vessel was arrested during the raids, but it's unclear if his design will live on with a new engineer filling in his role.


Sales of £2m personal SUBMARINES  to the mega-rich.

Sales of mini-submarines are soaring as super-rich turn to deep sea exploration. Only 15 to 25 vessels are sold a year but the numbers have doubled in two years. Super-rich are changing yachts from party boats to centres of scientific study. Sales of mini-submarines are soaring as they became the latest must-have toy for the super rich. Roman Abramovich and the emir of Abu Dhabi are among the early adopters of the deep-sea vessels which are increasingly seen descending to the ocean's depths beside luxury yachts. The three companies which make nearly all mini-submarines believe the market to be worth £75million a year. Sales of mini-submarines are soaring as they became the latest must-have toy for the super rich. The three companies which make nearly all mini-submarines believe the market to be worth £75million a year. While this only translates to sales of 15 to 25 vessels, the numbers are expected to double in 2021 compared to 2019. James Bond could also drive sales after the advert for the upcoming No Time To Die featured a glider that transforms into a submarine. The demand has increased every year since the 1990s when the gadgets first came on to the market.  The super rich are now looking for more thrills and adventures for their yacht guests rather than lounging on deck, insiders say. Roman Abramovich and the emir of Abu Dhabi are among the early adopters of the deep-sea vessels. James Bond could also drive sales after the advert for the upcoming No Time To Die featured a glider that transforms into a submarine. The demand has increased every year since the 1990s when the gadgets first came on to the market. Bruce Jones, chief executive of Triton in Florida says sales have increased by nearly a third this year alone during a global pandemic. He said: 'In the beginning you could go to a boat show and people would come by and laugh at you. They wouldn't give us the time of day, but now they're constantly beating on the door.' he boss added that he has up to five orders to close before the end of the year and aims to sell four every quarter.  Triton's most hi-tech mini-submarine, the DSV Limiting Factor, broke the record for the deepest sea dive last year. Bruce Jones, chief executive of Triton in Florida says sales have increased by nearly a third this year alone during a global pandemic. It descended 35,843ft to the bottom of Challenger Deep, the deepest known part of the ocean. Owners, which included the late Microsoft founder Paul Allen, are said to be eager to make discoveries with the vessels themselves. They are changing their yachts from party platforms to centres for scientific discovery, Mr Jones said. 'My owners are typically heroes to their families and friends because you can present an experience that you can't get anywhere else,' he said. Seamagine's Aurora can carry up to eight people to a depth of 3,000ft as the super rich become interested in exploration. Owners, which included the late Microsoft founder Paul Allen, are said to be eager to make discoveries with the vessels themselves. Some, including hedge fund billionaire Ray Dalio, are even inviting scientists on their trips to the deep. Roy Heijdra from Netherlands-based U-Boat Worx said owners are now wanting their yachts to be specifically designed for exploration rather than just leisure and pleasure. He said ten vessels have been sold this year, costing up to £2.2million each. The Nemo model, which costs £875,000 is 2.8m tall and can dive more than 300ft with two people on board. Seamagine, which was founded in 1995, has vessels which carry up to eight people to a depth of 3,000ft.


Why the U.S. Navy Never Built Titanium Submarines Like Russia

In hindsight, there are numerous reasons why the U.S. Navy did not follow the Soviet shipbuilding industry down the path of titanium hulls.During the late Cold War, the Soviet shipbuilding industry invested substantially into titanium-constricted submarine hulls—but its U.S. counterpart never followed suit. There’s a reason for why the U.S. Navy passed on titanium submarines. Project 705 Lira, better known by its NATO designation Alfa, was among the most innovative Soviet submarines of the 1960s. Powered by a technically impressive lead-cooled fast reactor design, the Alfa class registered performance numbers that remain unbeaten to this day. Lira is the fastest serial submarine ever built, second only to the prototype Papa-class submarine. It could also operate at a depth of twenty-two hundred feet, far outmatching even its contemporary NATO counterparts. These innovations were enabled, in no small part, through the Alfa’s revolutionary use of a titanium alloy hull. An extremely light and durable metal, Titanium brings several advantages over a standard steel hull construction. A titanium construction facilitates higher pressure tolerances, allowing a submarine to operate at significantly greater depths. As seen with the Alfa and Papa classes, the comparative lightness of titanium bears the potential for record-breaking speeds. The metal is likewise resistant to corrosion and paramagnetic, meaning that it can be harder to detect by naval vessels using magnetic anomaly detectors (MAD).  The Alfa’s impressive performance prompted alarm from the U.S. military, which expressed concern that the Alfa travels too fast, and too deep, to be reliably countered by the U.S. Navy’s existing arsenal of anti-submarine torpedoes. But Washington, wisely, did not try to reproduce Soviet advancements in submarine design. Instead, the navy invested in new, high-speed anti-submarine warfare (ASW) weaponssuch as the Mark 48 Torpedothat were thought to be capable of catching Alfa boats. In hindsight, there are numerous reasons why the U.S. Navy did not follow the Soviet shipbuilding industry down the path of titanium hulls. To begin with, titanium is an extraordinarily rare and expensive metal that’s much more complex to process than iron. Titanium panels are more difficult to bend into shape, especially on the scale of military submarines. To be successfully manipulated, titanium had to be handled in specially constructed, argon-infused warehouses by trained welders equipped with an outside supply of oxygen. A costly and time-consuming process of trial and error reaffirmed that titanium is subject to embrittlement by hydrogen at higher temperatures, potentially causing design imperfections that may compromise the submarine’s structural integrity. There was simply no conceivable supply chain in place to make the serial production of titanium even remotely cost-efficient. The Papa-class prototype cost an astonishing 1 percent of the Soviet Union’s entire 1968 GDP, and that doesn’t factor in titanium’s unique maintenance and component degradation costs.  For the U.S. military, it was exponentially cheaper and markedly more effective to develop torpedo countermeasures against titanium-constructed boats than to embark on the uncertain journey of copying costly Soviet designs. There is little question that the Alfa’s titanium construction was groundbreakingso much so, that some U.S. intelligence operators refused to believe it at firstbut some innovations are meant to be merely studied rather than emulated. The Soviets’ ill-fated attempt to serially produce titanium submarines is certainly one of them. 


The story of an innovative navy ‘mafia’

Could anyone imagine that Hellenic Navy officers would follow the written advice of an anonymous top Italian mafioso to execute one of the most critical missions of their careers? Or that in their effort to activate our most advanced nautical weapons, navy officers would manage to come up with solutions to serious technological issues at a cost of less than 3% of the amount demanded by foreign suppliers?In Greek Kathimerini on November 8, 2020, reporter Vassilis Nedos described crucial aspects of the Type 214 submarines’ odyssey and how they ended up being the superweapons in the conflict against Turkey, even though, until recently, they had been mocked as the “listing submarines.”Nedos’ article noted that one could write a separate history of the navy personnel who innovated in order to solve the huge problems that kept these submarines from being completed for years.This article is the story of that storied navy team which applied strange and novel management principles that the Mafia itself would envy. It negotiated with unions, outsmarted US and German tech giants and took unprecedented initiative on a Greek and global scale in order to finally succeed in activating the Type 214 submarines, saving the Greek state tens of millions of euros.It is 2013. Work at Hellenic Shipyards has ground to a halt. The three Type 214 submarines and the one Type 209, under overhaul, are locked in, their completion state much less than the officially acknowledged 80%. Whatever has been completed has been completed by Hellenic Shipyards under the direction of German shipbuilding firm Howaldtswerke-Deutsche Werft (HDW). German and US firms involved in the construction of the four submarines are either AWOL or demanding tens of millions of euros to help. The shipyard workers are unemployed and owed months of back pay and the unions are pushing for exorbitant salaries, mostly for some of their favorites, in the midst of a financial crisis. Under these desperate conditions, the navy leadership decides to take matters into its own hands and is given the OK by the civilian leadership to take over Hellenic Shipyards to complete the construction of the four subs. Responsibility for this historic mission falls upon the then commander of the Skaramangas Naval Detachment (SND), an enlightened officer who proved to have magical powers in managing both personnel and resources. From its establishment in 1987, SND’s exclusive role was to monitor Hellenic Shipyards’ progress in completing the navy’s procurement programs and make sure the contractual terms were followed. Overnight, SND morphed from a simple observer and inspector at the shipyards to manager of all their operations and personnel. The first concern of the SND commander was to choose a “dream team” of line and non-commissioned officers from the Submarine Command who would be responsible for organizing and managing the construction program. This was a wise decision, because no one knows the submarines – and cares for them – more than those who use them and the Submarine Command is one of the most demanding in its training and contains some of the navy’s best professionals, like the SND commander himself. Next, the commander and his team had to ensure the adequate staffing of the shipyard by rehiring more than 700 laid-off managers, administrative staff and workers. Here, however, there was the potential for a culture clash, because naval officers have great experience in managing personnel, but within the framework of the rules and regulations of the Hellenic Navy. How could they manage hundreds of civilian employees and the unions? The commander realized he was facing an unprecedented problem, which demanded an unprecedented solution. His solution included unusual management methods and practices, taking advice even from the Mafia. Specifically, the commander turned for help to the classical management handbook “The Mafia Manager,” principles of corporate management written by a high-ranking Italian-American mafioso, which he recommended that all the officers in his team read. The story of how the team applied the book’s principles is unique and could easily form the material of a movie script. Where the navy team really triumphed was in managing the technological challenges of the construction. The team was split into 10- to 20-strong teams per submarine, each charged with leading and coordinating the workers’ teams on the heaviest building works. Each team also contained line and non-commissioned officers highly specialized in electronics, who undertook the most sensitive electronic works themselves, so they could be in complete charge of the management of each vessel’s sophisticated operational systems. The naval team realized very quickly that there were huge issues with supply delays in replacement parts as well as overcharging. For example, a German firm asked for €60,000 for a power supply that would take months to deliver. Finally, the navy technicians managed to build it themselves in less than an hour, with components bought at local stores for less than €1,500. That is, for 2.5% of the cost charged by the Germans. There were instances, however, when, after tinkering with very sensitive electronics, the SND had to ask a big US military equipment producer for help. The Greek technicians thought they had solved the problem, but, given the complexity of the system, it was important to get the builder’s opinion. When the US technician examined the component, he could not believe the ingenuity of the Hellenic Navy team and took pictures to show his colleagues. “This has never happened,” he said. “It is the first time I’ve seen this component opened; normally, once it leaves the factory, we never open it again.” These small, successive triumphs boosted the morale of the navy officers, who were working at an exhausting pace. But it was worth the effort, since they saw daily that they had created a well-oiled system that identified problems and solved them immediately, and this experience was stored to solve future problems faster. Many described the experience as the best and most satisfying years of their long navy service careers. Finally, with the help of the shipyard technicians, the naval team managed to activate the first Greek Type 214 submarine and the overhauled Type 209 sub within six months. The rest followed shortly afterward, saving the Greek state tens of millions of euros. Besides the submarines, this process had many benefits.At this moment, the Submarine Command probably has the best technologically trained line and non-commissioned officers in the world in this very specialized subject. One of them, still a submarine commander, was responsible for the activation of the electronics systems of all three Type 214 subs. This particular officer and his team solved the electronic systems’ compatibility issues that the builders themselves could not. If they had worked in the private sector, the young officer and his team would get huge bonuses. What they did was take over essentially inactive metal husks that had cost billions and turned them into vessels respected and feared by the Turkish Navy. The work of those involved was recognized by the Hellenic Navy’s top brass. Some were rewarded by the commander of the service and most were put into critical posts so that they continued to serve using the knowledge, the experience and, above all, the flexibility and outside-the-box thinking that they acquired while trying to activate the submarines. The knowledge from this unique experience has been transferred to the crews of all Greek submarines and the Submarine School to be disseminated to all future submarine officers. Success, though, has been bittersweet, in that capable officers from the navy, but also the air force and army, are increasingly turning to the private sector. Officers from the submarine activation program – and not just that program – have joined the domestic and global private market. Of course I don’t know how we could solve this. What I do know is that these people are our ultimate deterrent against an ever-more-aggressive Turkey, so solving this brain drain should be an immediate priority. The “mafia man” himself, the former SND commander who organized it all, rose to the rank of vice admiral and retired in September 2020, aged 57. Maybe he could be put at the helm of a big state agency instead of staying at home? Maybe his next mission ought to be to set up and organize a special state agency that could train and use similarly capable and motivated people to those of the submarine “dream team.” They could be our real superweapons. Submarines are divided into nuclear and conventional. Nuclear submarines have essentially unlimited autonomy: They can remain submerged for as long as is operationally desirable – for months, even, in theory, years. By contrast, conventional submarines, like the six older Type 209 ones, use batteries that must be charged every few days. To charge them, the submarine must be near the surface to be able to use its snorkel to let air in. The air is needed to operate the battery chargers. During this operation, the submarines are vulnerable. The overhauled Type 214 submarines and the newer Type 214s are fitted with a revolutionary technology that allows them to remain underwater for over a month, as we saw in the recent tension with Turkey. The technology works as the reverse of electrolysis, in which a current is applied to two electrodes to separate the water into its constituent elements, hydrogen and oxygen. The Type 214 subs combine hydrogen and oxygen to produce water and electricity, which charges their batteries. This procedure is quiet and anaerobic – that is no outside air is needed. Thus, in combination with our crews’ competence, the submarines can remain undetected.


Japan Submarines: Super Soryu Successor

November 15, 2021: In October 2020 Japan launched the first (of seven) Taigei class submarines. These are successors to the twelve Soryu class subs. The last two Soryus made the Taigeis possible because these subs These two Soryus were called “Super Soryu” because of their new lithium-ion battery tech and the higher cost that went with this new feature. One of the Super Soryus is unfinished but expected to enter service in 2021. The first Super Soryu entered service in early 2020 and it was different because the last two Soryus had a number of improvements, especially the lithium-ion batteries. The Taigeis are basically similar to the Super Soyus with a few additional enhancements. The Taigeis are also 3,000-ton subs with a crew of 70, six torpedo tubes and a top speed of 37 kilometers an hour (submerged) and 24 kilometers an hour on the surface. Several nations (South Korea, China, Germany and the United States) have been working on making lithium-ion battery technology work in subs and those efforts became particularly intense after 2015. The main obstacle was the safety of lithium-ion batteries in a submarine. Lithium-ion batteries are known to be dangerous under certain conditions. Consumer products like cell phones and laptops have had problems. Not a lot but enough of the hundreds of millions of cellphones and laptops using lithium batteries have burst into flames or exploded to make the general public aware of the risk. These overheating problems had to be minimized to levels that made lithium-ion batteries safer than the current lead-acid batteries used for over a century in submarines. Several nations believe they have achieved the needed safety levels and Japan is the first to put a lithium-ion boat into service. This is encouraging for China, South Korea and Germany who are planning on offering upgrades from lead-acid to lithium-ion for existing subs. Orders for such conversions have not been forthcoming because there have not been any military subs in service with the new battery tech. Now there is one boat and another will join it in 2021. The advantages of lithium-ion batteries are many. First, lithium-ion stores twice as much power as equivalent (in size and weight) lead-acid batteries. Lithium-ion batteries can release more power than lead-acid and take less time to recharge. Lithium-ion batteries do not degrade over time and have more recharging cycles. Lithium-ion batteries can enable subs to move faster under battery power. Putting out low levels (for low speed) of power, lithium-ion batteries can provide almost as much submerged time as current AIP (Air Independent Power) systems. This means that smaller coastal subs can be designed without diesel engines because lithium-ion batteries provide enough power for the short voyages coastal subs are designed for. These coastal boats don’t even have to return to port to be recharged as this can be done by a surface ship equipped with the proper cables and power regulation system to quickly recharge lithium-ion batteries. Users of cell phones and laptops have already been getting this fast-charge capability and for those who used the older battery tech appreciate how much shorter recharge times are now. The last two Soryu class subs are dispensing with the AIP systems they were designed to use and rely on lithium-ion batteries to provide the underwater endurance similar to that provided by AIP. This approach is also being watched closely by submarine builders because adding AIP is more expensive than installing lithium-ion batteries. The key factor is the safe operation of submarine lithium-ion batteries under all conditions, including accidents that damage the hull and internal equipment. This is something you can’t really test, only design for. The Japanese lithium ion battery manufacturer insists they have all this covered. Only time at sea will tell. The quantity and quality of its submarines is important for Japan. Since the 1970s, Japan has maintained a fleet of at least 18 diesel-electric submarines. A decade ago, in the face of growing Chinese naval power, it was decided to increase the submarine force to 21 or 24 boats. Currently, there are 22 subs in service; 11 Soryu class and 11 Oyashio class. Two of the Oyashios now serve as training boats and are used to produce sailors qualified to serve in submarine crews. Since 1980, Japan has replaced their subs after about 25 years, with newer designs based on experience with the previous classes. The current expansion was accomplished by building more of the new Soryu class. A decade ago there were two Soryu class boats in service and four under construction. These 2,900-ton boats have a crew of 65, six 533mm (21 inch) torpedo tubes and 30 torpedoes or Harpoon anti-ship missiles. There are also two 76mm tubes for launching acoustic countermeasures. Sonar and electronics are superior to the previous class. These boats also have AIP that enables them to remain submerged for a week or more at a time. These subs cost about $665 million each. Currently, Japan also has eleven 2,700 ton Oyashio class subs, built 1994-2008. With a crew of 70, they are armed with six 533mm (21 inch) torpedo tubes and 27 torpedoes or Harpoon anti-ship missiles. Their sonar equipment is superior to that of the Harushio class. Top surface speed is 24 kilometers an hour, top submerged speed is 37 kilometers an hour. Japan has retired its seven Harushio class boats, including two diverted to training duties. These 2,400-ton boats were built 1987-1997 and have crews of 65-70 sailors. They are armed with six 533mm (21 inch) torpedo tubes and 26 torpedoes or Harpoon anti-ship missiles. They have hull-mounted and towed sonar. Top surface speed is 24 kilometers an hour, top submerged speed is 37 kilometers an hour. China currently has about 76 submarines, none of them as effective as the Japanese boats, despite 19 of them being nuclear. The Japanese crews are also better trained, but the Chinese are building better ships with more intensively trained crews. Two other Chinese neighbors, South Korea and Australia are also increasing their submarine forces.

The Type-093A Shang-II Class submarine is equipped with a wide array of missiles and torpedoes.


The Chinese Navy’s Most Powerful Attack Submarine: The Type-093A

China’s foreign policy is becoming more assertive. With this the Chinese Navy (PLAN) is increasingly willing to show its might. Their growing naval presence in the South China Sea is being augmented with new overseas bases to increase their reach. These are in Djibouti on the Horn of Africa, in Cambodia, and maybe in the future in Pakistan. These match potential flash points where the PLAN may clash with other navies, such as the South China Sea, Pacific Ocean and Indian Ocean. The visible signs of the naval expansion include new aircraft carriers, assault carriers, cruisers, and destroyers. And underpinning it all is something which goes unseen: increasingly potent submarines. The most modern of China’s current submarine fleet are the Type-093A Shang-II Class (aka 09-IIIA). These ~7,000 ton nuclear-powered boats are roughly the same size as the Royal Navy’s Astute Class. In fact, in size terms it sits between the latest French Navy Suffren Class and the U.S. Navy’s Virginia Class. Their relatively large size may provide more space for noise reducing features. Acoustic stealth is one of the most prized attributes of modern submarines. The quietness of the design is classified information, but we can assume that they are becoming increasingly stealthy. It’s estimated load of 22 torpedo-sized weapons is fewer than any of those boats however, although close to the smaller Suffren Class. Within this load-out it can carry the YJ-82 anti-ship missile, rocket mines and torpedoes. Both the Yu-6 thermal torpedoes, which are loosely equivalent to the U.S. Navy’s Mk48, and electric torpedoes will be carried. They are also believed to be able to carry the YJ-18 supersonic cruise missile. This will likely form its main weapon against both warships and land targets, providing a first-night strike capability. The YJ-18 launch canisters may have been visible when President Xi Jinping visited a Type-093A on June 11, 2018. Possibly the greatest difference to Western submarines is not part of its specification. Chinese submarines have a dual leadership model with the Captain joined by a political officer. These Commissars are of the same or similar (sometimes higher) rank. Generally the commissar is responsible for the crew’s welfare and moral, as well as monitoring political cohesion. Exactly how this joint leadership will perform in combat, where quick decisions are often critical, remains to be seen. In the near future China may build a variant with a vertical launch system (VLS) for land-attack cruise missiles. There was speculation that the Type-093A model already had a VLS in the raised casing behind the sail, but this appears to be the towed sonar array. A cruise missile variant of the Shang may be a lower risk intermediate step before the altogether more powerful Type-095 Sui Class enters service. No 095s have yet been launched but the first tantalizing hints at a new class of nuclear submarines has recently been seen in commercial satellite imagery. China’s nuclear submarines are built at Huludao on the Bohai Sea. The site is being expanded to allow an increased rate of submarine construction. The Type-093A Class is currently the most powerful attack submarine in China’s arsenal. It is already a cause for concern for potential adversaries, the unseen component of China’s increasing confidence in the naval Arena. But the next class of Chinese submarine are likely to close the technological gap even further. We may soon find out.


MDL Launches Fifth Scorpene-class Submarine for the Indian Navy

Indian shipbuilder Mazagon Dock Limited (MDL) launched today "Vagir", the fifth Scorpene-class. The launch event took place at the shipyard in Mumbai with VIPs attending via video conference because of the health crisis. Vagir is named after the Sand Fish, a deadly deep sea predator of the Indian Ocean. “The state-of-art technology used in the submarine has ensured superior stealth features such as advanced acoustic absorption techniques, low radiated noise levels, and hydro- dynamically optimised shape and also the ability to attack the enemy using precision guided weapons. With the launching of Vagir, India further cements its position as a submarine building nation. This is in sync with the current impetus of the government towards Make in India and Atma Nirbhar Bharat.” Six Scorpene-class submarines have been ordered by India in 2005 as part of the Project 75 program. They are constructed locally by the Mazagon Dock Limited shipyard in Mumbai, with assistance of Naval Group, designer of these submarines. Two submarines, Kalvari and Khanderi, have already been commissioned into the Indian Navy. The third and fourth submarines of the class, Karanj and Vela, are conducting sea trials, whilst construction of the sixth and final submarine, Vagsheer, is ongoing. According to official documents, the Indian Navy has two ongoing conventional submarine programs, with a third one on the way.

Phase I – P-75

Six submarines of Scorpene class (P-75) are to be constructed at Mazagon Dock Limited, Mumbai. Two Submarines of the project namely INS Kalvari and Khanderi have been commissioned in December 2017 and September 2019 respectively. The balance submarines are likely to be inducted every nine months. The last submarine is likely to be delivered in June 2022.

Phase I – P-75(I)

Six submarines are to be constructed under P-75(I) under the Strategic Partnership model promulgated by the Defence Acquisition Council (DAC) on 31 May 2017. AoN for the case has been accorded by DAC on 27 February 2019. A multidisciplinary Empowered Project Committee (EPC) has been constituted by MoD on 15 February 2019 to steer the project from ‘EoI issuance’ to ‘Contract Conclusion’. The Request for Expression of Interest (REoI) for shortlisting of SPs and Foreign, Original Equipment Manufacturer (OEMs) was issued on 20 June 2019 and 02 July 2019 respectively. The response of SPs have been received on 11 September 2019. The response of Foreign OEMs have been received on 24 September 2019. The Request for Proposal (RFP) for the case would be issued in mid-2020. The induction of the submarines would be between 2027-2032.

Phase II

Twelve submarines of an indigenous design are envisaged to be constructed in India in this phase with the experience gained and technology absorbed from construction of submarines under Phase I.

About Scorpène type submarine

Scorpène is the conventional submarine designed by Naval Group for the export market. It demonstrates both Naval Group’s ability to deliver best in class submarines and to conduct successful transfers of technology. Today 14 Scorpène submarines are in operational service or being built, for the Chilean Navy (2 units), the Malaysian Navy (2 units), the Indian Navy (6 units) and the Brazilian Navy (4 units). The Scorpène design is adapted to fit each navy’s specific requirements. Thus, the Brazilian Scorpène is slightly longer to carry a larger crew, almost double the patrol range, and be able to cover greater distances. Scorpène is ideally suited for action and operational effectiveness. Robust and enduring, it’s an ocean-going submarine also designed for shallow waters operations. Multipurpose, it fulfils the entire scope of missions such as anti-surface and anti-submarine warfare, special operations, offensive minelaying and intelligence gathering. Integrating improvements from French Barracuda-Class fast-attack submarine, Scorpène has cutting-edge capabilities.

P75 Kalvari-class by the numbers

One of the tasks of Naval Group India Private Limited is to source, train and qualify local industrial companies involved in production and maintenance of P75 ships. ©Naval Group

67,56 m
+10 m with the future AIP Plug

-Up to 52 days

Surface : 1615 tons
Submerged: 1775 tons

-Up to 44 men
-High level of automation allowing the crew to be limited to 25, not counting
-Ability to carry and operate commandos

-6 x 533mm tubes
-Up to 18 heavyweight weapons.
-SM-39 Exocet antiship missile (MBDA)
-SUT 266 Legacy heavyweight torpedo (Atlas Elektronik)


Atlantis Submarines Barbados debilitated by COVID.

One of Barbados’ major tourist attractions, which shut its doors in March, does not expect to be back in business until November 2021. The grim news came from Roseanne Myers, wwwgeneral manager of Atlantis Submarines Barbados Ltd, as she participated in an online panel discussion hosted by the Institute of Chartered Accountants of Barbados (ICAB) on the topic, Beyond Staycations. Myers, a former president of the Barbados Hotel and Tourism Association (BHTA), disclosed that the popular submarine ocean dives company, which has been in operation for 34 years, went on its last tour at the end of March. According to Myers, it became necessary to shutter operations and cancel bookings as the COVID-19 pandemic was beginning to explode around the world. “We took the decision to shut down because we weren’t sure what exactly we would face, and we were not comfortable to expose staff . . . . We cancelled the . . .  last cruise ship bookings. We said ‘thank you but no thanks’ and we took the position that it was important to protect the staff rather than go after every cent until the business dried up,” she said frankly. Myers, who joined fellow panelists Renee Coppin, the general manager of Pirate’s Inn and Infinity on the Beach and Jeffrey Roach, president of the BHTA, said the forced closure of the business has had a direct impact on employees, many of whom have been working there for more than a decade. With more than 60 per cent of her company’s winter business coming from cruise passengers and the summer business divided between locals and regular air arrivals, Myers said the COVID-19 shock to the company was extremely debilitating. The tourism executive said among the major challenges confronting the attraction was zero income for at least 20 months, high utility costs, and major severance commitments. “The next major opportunity was the return of the cruise ships, but we are not getting that back until October 2021 . . . . That chunk of business is hard to replace,” she noted. Beyond this, Myers said Atlantis Submarines was still stuck with high electricity bills, as it had not invested in alternative energy and “we have staff who have been around for up to 30 years, so we were looking at high severance”.


Why India Leases Some of Russia's Best Nuclear Submarines

In the latest instance of long-standing military cooperation between Moscow and New Delhi, India is set to rent additional Russian nuclear-powered attack submarines as a stepping stone on its path to acquiring an indigenous nuclear submarine force. A somewhat unusual arrangement, India’s willingness to lease—rather than procure or import outright— submarine technology from Russia has clear precedent in recent history. In 1986, the Soviet Union became the first state to lease a nuclear submarine. In an attempt to cultivate the Sino-Soviet defense relationship, the Kremlin inked a deal with New Delhi for the 10-year lease of a Charlie-class nuclear cruise missile submarine. The transfer was accompanied by a myriad of Soviet-imposed restrictions: the K-43 submarine, which entered service in the Indian Navy as the INS Chakra, was subject to frequent Soviet inspections and maintenance sessions, could not be loaded with certain types of weapons, and was severely restricted for purposes of offensive wartime operations. Further still, the contract stipulated that parts of the INS Chakra were to be manned entirely by Soviet crews; Indian servicemen were reportedly denied access to the reactor. Partially due to these restrictions, New Delhi opted to terminate the lease agreement. The INS Chakra was returned to the Soviet Union in 1990 and decommissioned one year later. The K-43 contract disintegrated, in no small part, because the Soviets’ onerous terms ignored the reasons why India was interested in renting the K-43 in the first place. Namely, the INS Chakra was meant to provide the Indian Navy with the crucial experience of maintaining and operating a nuclear submarine as if it were their own. Secondly, the Indian Navy-- which has long planned on making the leap into domestically produced nuclear attack submarine production--  sought access to Soviet nuclear reactor designs. With the former greatly curtailed and the latter denied outright, New Delhi lost all interest. The Putin administration, in 2008, negotiated the lease of another nuclear attack submarine, this time the K-152 from the Akula-class. Under the $900 million lease agreement, Indian engineers and sailors traveled to Russia to receive training on how to operate and service the submarine. The K-152, commissioned as the INS Chakra II, was partly meant to check Chinese expansion in the Indian Ocean. Despite significant operational differences between the submarines (one is an attack sub, and the other a ballistic missile submarine), the Indian navy used Chakra II to prepare its submarine crews for the introduction of its nuclear-powered Arihant-class submarine line in 2016. New Delhi was apparently much more interested in renting a submarine from Russia’s new Yasen cruise missile submarine line, but there were none available-- other than the older  Severodvinsk, all of the new Yasen-M submarines remain in various stages of testing and construction. With the Chakra II lease set to expire in several years, India has rented yet another Akula-class vessel. Dubbed the Chakra III, the Akula submarine will be transferred to India by 2025 as part of a $3 billion contract. According to an Indian official, the deal includes the refurbishment of the submarine with Indian sensors and communications components. From what little has been publicly revealed, it appears that this latest contract imposes few restrictions on what the Indian navy is allowed to do with the Chakra III. Though its primary purpose is likely as a testbed to facilitate India’s plans to indigenously produce six nuclear attack submarines, it remains to be seen if the Chakra III will become embroiled in the ongoing Sino-Indian tensions in the Indian Ocean and the South China Sea.


Kalvari class submarine and its strategic significance

The Kalvari-class submarines have capability of operating in a wide range of Naval combat including anti-warship and anti-submarine operations, intelligence gathering and surveillance and naval mine laying. Indian Navy’s fifth Kalvari-class Diesel Electric attack submarine INS Vagir was launched at Mazgaon Dock in Mumbai on Thursday. A look at this modern and stealthy class of submarines having been built under Project 75 and whose design is based on the Scorpene class of the submarines. Indian Naval Ship (INS) Vagir, launched on Thursday, is the fifth among the six Kalvari-class submarines being constructed by the public sector shipbuilder Mazagon Dock Ltd (MDL) in Mumbai. The design of Kalvari class of submarines is based on Scorpene class of submarines designed and developed by French defence major Naval Group formerly DCNS and Spanish state owned entity Navantia. This class of submarines have Diesel Electric transmission systems and these are primarily attack submarines or ‘hunter-killer’ type which means they are designed to target and sink adversary naval vessels. The Kalvari-class submarines have capability of operating in a wide range of Naval combat including anti-warship and anti-submarine operations, intelligence gathering and surveillance and naval mine laying. These submarines are around 220 feet long and have a height of 40 feet. It can reach the highest speeds of 11 knots when surfaced and 20 knots when submerged. The modern variants of the Scorpence class of submarines have what is called the Air Independent Propulsion (AIP) which enables non-nuclear submarines to operate for a long time without access to surface oxygen. It also needs to be noted that the Defence Research and Development Organisation (DRDO) has an ongoing programme to build a fuel cell-based AIP system for Indian Naval Submarines. The Kalvari class of submarines are capable of launching various types of torpedoes and missiles and are equipped with a range of surveillance and intelligence gathering mechanisms. India currently operates one submarine each in nuclear powered Classes of Chakra and Arihant and in addition to 14 submarines belonging to three classes of Diesel Electric category — Kalvari, Shishumar and Sindhughosh, some of which are ageing.The nuclear powered and diesel electric submarines have their designated roles in the Carrier Battle Groups, which are formations of ships and submarines with Aircraft Carriers at the lead role. As per the basic principles of submarine deployment and minimum requirement for India to create a strategic deterrence, there is a specific number of submarines of both types that India needs to have in active service. Currently India has less number of submarines than what is required with some more of those from both types being at various stages of construction. In the late 1990’s, around the time of Kargil war, a three decade plan took shape for indigenous construction of submarines which is known to have two separate series of submarine building lines – codenamed Project 75 and Project 75I — in collaboration with foreign entities. The Ministry of Defence is also known to have put place a roadmap for indegenious design and subsequent construction submarines which will further add numbers to the Navy’s arsenal. The submarine which was till now identified as ‘Yard 11879’ was launched on Thursday at Kanhoji Angre Wet Basin of Mazagon Dock Limited (MDL). Minister of State for Defence Shripad Yesso Naik presided over the ceremony via videoconferencing from Goa and the submarine was formally named Vagir in accordance with the Naval traditions by his wife Vijaya Naik. The ceremony was also attended by senior naval officers and dignitaries both from Integrated Headquarters Ministry of Defence (Navy), Headquarters Western Naval Command and officials from Naval Group, France.


Australia's submarine fleet multi-million-dollar contract dispute.

The Defence Department may be forced to pay out tens of millions of dollars to a US company over a contract dispute involving crucial new escape and rescue equipment for Australian submarines. A confidential report recommended the contract with American-owned Phoenix International (Australia) be "terminated by agreement". The head of Defence's Naval Shipbuilding Advisory Board stated in the report that the relationship between both parties was "dysfunctional". In a brief statement, Defence acknowledged problems with the contract. The ABC can reveal the program to provide a "Submarine Escape Rescue and Abandonment System" by 2022 has now been placed on the department's 'Project of Interest' list, marking it as a concern, after a year-long bitter standoff. A confidential report completed for Defence last month recommends the contract with American-owned Phoenix International (Australia) be "terminated by agreement". In his report marked "sensitive", the head of Defence's Naval Shipbuilding Advisory Board concludes the relationship between both parties is "dysfunctional" and neither is "blameless". Professor Don Winter's report also describes the contract drawn up by Defence's Capability and Sustainment Group (CASG) as "inappropriate". Under the 'SEA1354 Phase 1' project signed in December 2018, Phoenix is scheduled to deliver a Submarine Rescue System to support both Australia's aging Collins Class fleet, as well as the yet-to-be-built future Attack Class submarines. Australia's Collins Class fleet currently uses a submarine escape and rescue capability built by the British owned JFD company, which will no longer be certifiable after 2024. The total cost of acquiring the new escape and rescue equipment was expected to be $279 million, with lifetime costs totalling close to $1.4 billion over 35 years. In a brief statement, Defence acknowledged problems with the contract which industry insiders have described as "diabolical" and "very, very messy". "There have been delays in progressing rescue system design activities to schedule, and the project was declared a Project of Interest in June 2020," a Defence spokesperson told the ABC. "Defence has initiated an independent review of the project to inform consideration of the way forward by Government." Sources close to the project say the contract drawn up by CASG is "among the worst" they have seen but warn around up to $100 million could be wasted if it is torn up. Several mainly Perth-based defence sub-contractors have also been caught up in the contractual dispute with Defence acknowledging the department is also "engaging" with them. The Australian program director for Phoenix International, Ian Milliner, said he was unable to comment due to contractual restrictions.In June, Defence Minister Linda Reynolds attended a sod-turning ceremony at Western Australia's Henderson shipyard for a new purpose-built facility to house the new Submarine Rescue System. "In a time where our submarines are operating more than ever, we must continue to ensure our submarines are prepared for any mission, including rescue operations," Senator Reynolds said at the time. The Defence Department insists delays with the project "do not impact our ability to provide an ongoing submarine rescue capability for our submarine fleet". Last week Defence announced that the Royal Australian Navy’s contract for a new submarine rescue system is on the department’s ‘project of interest’ list. US company Phoenix International may receive millions of dollars in compensation after a report recommended that the contract it was awarded be terminated. Defence has assured the public that the delays ‘do not impact our ability to provide an ongoing submarine rescue capability for our submarine fleet’. That’s wrong. For starters, Australia has a responsibility to ensure the safety of its submarine crews. As the material quality of submarines has improved, accidents have become less frequent. When they do occur, though, they attract a lot of attention. Almost exactly three years ago, the Argentinian submarine ARA San Juan disappeared with all hands and the global submarine rescue community mobilised on a scale not seen since the loss of the Russian submarine Kursk in 2000. Many navies can operate collaboratively to meet their rescue responsibilities. But Australia’s geographic isolation creates an obligation for a sovereign capability, since the amount of time it would take for any other country’s system to react, transport and mobilise exceeds the ‘time to first rescue’, which is usually 72 hours from the time of an accident. If a submarine sinks and can’t surface, it’s because it has taken in more water than its buoyancy can address. Submariners are trained to escape individually through an escape tower (similar to an airlock), but beyond a depth of 180 metres (approximately equivalent to the continental shelf), a submarine rescue vehicle is necessary. The rescue vehicle, fitted with a skirt that resembles an inverted teacup, is positioned on the flat surface (or seat) surrounding the escape tower. Pumps are used to reduce the pressure inside the skirt so that the vehicle is ‘stuck’ to the seat by hydrostatic pressure. Once the water is pumped out, the hatches are opened and survivors transferred into the rescue vehicle. The vehicle then returns to the surface and those rescued are transferred to a support vessel. Australia established its submarine escape and rescue project in 1994. In just 13 months, the project delivered a complete capability centred around a tethered remotely operated rescue vehicle, known as Remora, and a comprehensive hyperbaric transfer and treatment system. Remora could be used to rescue survivors down to the collapse depth of the Collins-class submarines and could operate in all the environmental conditions that prevail in Australia’s submarine operating areas. Sadly, Remora suffered a severe mishap in 2006 and, after its two crewmen were rescued, sank to the seabed. Although recovered and restored, it was refused certification. In its place, the government acquired the services, based in Australia, of the UK’s LR5 piloted submersible, which had just been superseded by the NATO submarine rescue system. LR5 can accommodate 16 distressed submariners at a time and can make up to eight trips to the target submarine before it needs to recharge its battery, meaning a rescue capability of 120 personnel. Since 2009, submarine rescue firm JFD has maintained, operated and upgraded the system. It is now approaching the end of its lifecycle. As a result, in 2015, the government approved project SEA 1354 Phase 1 to deliver a submarine escape rescue and abandonment system, or SERAS, capability that will be compatible with the new Attack-class submarines before LR5 reaches its end of life in 2024. LR5 is not the solution for SEA 1354 but, in the absence of a workable arrangement to deliver the new SERAS, it may become the gap-filler. There are several areas where its operating limitations give cause for concern. The most serious of these is that the LR5’s maximum operating depth of 425 metres is about 25% less than the crush depth of the Collins-class submarine. While the area between 425 metres and crush depth could be small in some places because of the slope of the seabed beyond the continental shelf, such a situation would be unacceptable to the offshore oil industry, for example. If a submarine sinks in water too deep for the rescue vehicle but too shallow to be crushed, a nation should possess the capability to rescue the survivors. Should a submarine accident occur, this capability gap would require mobilisation of the US Navy’s submarine rescue system. It would be a struggle to mobilise that system to Australia within four to five days of an accident. The system proposed for SEA 1354 by Phoenix International is a follow-on capability—essentially a third-generation Remora controlled remotely from the surface. The proposed design would comfortably exceed the depth requirement for the Collins and Attack classes and feature a launch and recovery capability in all expected sea states. It would also be able to ‘mate’ at any angle up to 60° in all prevailing currents where Australia’s submarines regularly operate. The cancellation of the contract will delay the introduction of a new rescue capability for five or six years. The LR5, which is unsuitable anyway, will be out of service in 2024 and Australia will be dependent on other countries’ submarine rescue systems with little prospect of achieving an acceptable time to first rescue of 72 hours in the event of an accident. Defence needs to work towards a solution with the current contractor and rationalise some of the features of the contract described as ‘inappropriate’ in the report written for Defence. Negotiations between the government and the contractor must progress more quickly for such a serious capability requirement. A more radical approach, akin to that taken with the Remora project, is needed. There will be solutions to the engineering requirements that seem to be at the heart of the problem and Defence may need to call for more internal assistance to help the navy achieve this. A traditional approach to procuring a new submarine rescue system would not only cost hundreds of millions of dollars, but also take time, a commodity that is in short supply.


China breaks national record for Mariana Trench manned dive

China has broken its record for the deepest manned dive into the world’s oceans, sinking an estimated 10,909 metres (35,790 feet) into the Mariana Trench, state-run news agency Xinhua said. The submersible landed on the seabed at the bottom of the deepest oceanic trench on Earth. The dive beat China’s previous dive into the Mariana Trench by over 800 metres (2,624 feet). Ye Cong, the chief designer of the submersible, told Chinese state-run media that the seabed was abundant with resources.High-tech diving equipment can help us better draw a ‘treasure map’ of the deep sea, Ye said in an interview quoted by Xinhua. According to CNN Travel, rare earths, which are essential for the production of high-tech products such as smartphones, missile systems and radar, are currently controlled in a major part by China. Beijing is working hard to ensure it retains its dominance in this area. In July, the Chinese government raised its quota for rare earth mining to a record high, as high as 140,000 tonnes (140 million kilograms). According to the state-owned China Daily newspaper, Chinese businesses have been investing in rare earth companies in Greenland as economic opportunities emerge in the Arctic region. The crew were expected to work for six hours in data collection and actual exploration when the vessel reached the deepest spot, says CGTN. That spot, known as the Challenger Deep, is roughly 10,900 metres deep. The water pressure is 110 kPa, equivalent to 2,000 African elephants. The cabin shell uses titanium, a perfect material with low density and high strength that allows the submersible not only to bear water pressure at 10,000 meters, but also to reduce self-mass and expand interior space.Powered by a lithium battery, the Striver can unload the equipment onboard and pick up samples from the surrounding environment with its flexible robotic arms. The arms can operate at an accuracy of one centimetre, the research team said.


Russia's Papa-Class Submarine Was a Speedy Titanium Wonder Weapon

The intense power from the reactors, combined with the lightweight titanium hull, allowed the submarine to reach truly impressive speeds underwater. When one considers the main attributes of a submarine, speed is not generally top of the list. While the ability to remain underwater for extended periods of time is well-known, its endurance and notably the quietness of the submarine are usually the key distinctions. However, sixty years ago, Soviet engineers developed an innovative submarine that established a still-unbeaten underwater speed record. The K-162—later re-designated the K-222—was the first titanium-hulled submarine. It came about as a result of Project 661 and was produced under direct orders from the Central Committee of the Communist Party of the Soviet Union and the country’s Council of Ministers during the summer of 1958. The submarine proved so expensive and so complicated that only one was produced, The directive called for a “high-speed submarine,” which eventually earned the nickname “Golden Fish” due to the cost of development and construction. What was unique about the submarine was that Project 661, known as the Papa-class, was built on a comprehensive, so much so that the design engineers were expressly forbidden from borrowing on prior design principles. As previously noted, it was the first submarine constructed out of titanium—which in itself was a massive undertaking that required the establishment of new supply chains and extensive trial and error. For one, titanium—which had only been “discovered” in 1791 and later named after the Titans of Greek mythology—is not mined like iron and it is also far rarer. It is also typically only found bonded to other elements, which made the processing more expensive. But it has numerous advantages including the strength of steel while being far lighter, and it is also resistant to corrosion. The Golden Fish was laid down in December 1963 and launched five years later, before being commissioned in December 1969. The nuclear-powered submarine was powered by two light-water VM-5 reactors that produced up to 177 megawatts of power to turn two side-by-side propeller shafts. However, the boat lacked any diesel generators, so batteries were the only emergency power source. The Project 661 was a large but conventional-looking double-hulled design that displaced 7,000 tons submerged. It measured 107 meters long and had a complement of eighty-two officers and seamen. Armed with ten SS-N-7 Starbright missiles in individual tubes forward of the sail, the K-222 was more than up to its intended task—to intercept and attack aircraft carrier groups. These were the first under-water launched cruise missiles (SLCMs) ever deployed. However, as with other Soviet submarines of the era—including the Charlie-class, the cruise missiles could only be reloaded in port. Yet, for its self-defense, the K-222 had only four torpedo tubes with just twelve torpedoes for self-defense. For her entire service, the K-222 was assigned to the Soviet Red Banner Northern Fleet. The intense power from the reactors, combined with the lightweight titanium hull, allowed the submarine to reach truly impressive speeds underwater. During its sea trials it reportedly even reached speeds of more than 51 miles per hour—considerably impressive when compared to the U.S. Navy’s Los Angeles-class nuclear-powered attack submarines, which have a top speed of just 23 miles per hour when submerged. However, the speed created excessive noise and also put a significant amount of wear and tear on the submarine. In September 1980, one of the boat’s nuclear reactors was damaged during maintenance and four years later was placed in the reserve fleet. The submarine was officially dismantled in 2010—with the reactors and nuclear fuel onboard as no provisions had been made for the reactor’s removal. While the Golden Fish was a one-off, its use of titanium and other technologies has been seen as a precursor to the Soviet Navy’s Alfa- and Sierra-class submarines.


First submarine tours of the Titanic launch

YOU can now explore the wreckage of the famous Titanic ship on a submarine tour - if you have £96,000. Launched by tour company OceanGate Expeditions, the experience will be part of an eight-day trip from Newfoundland in Canada, taking nine people at a time. The trip will include travelling to the underwater shipwreck, 370 miles away, as well as a six to eight hour submarine tour of it. You will be joined with just two other guests underwater, but the entire trip costs a pricey $125,000 (£96,368). You also won't just be a tourist - you will be deemed a "mission specialist" -and will help the experts doing technical surveys of the site, which stretches as far as 25 nautical miles.To be able to join the expedition, you need to fill in an application which includes a video interview and training. However, it is already pretty popular - 36 people have signed up for the first six trips planned next year, some of which, according to Yahoo, have also been the few to sign up for the $250,000 Virgin Galactic space launch. Ocean Expeditions has already completed expeditions in the deep sea across the Bahamas and Hudson Canyon and, if this trip is successful, it will be the first time the public will see the wreckage in 15 years. Stockton Rush, president of OceanGate Expeditions explained what to expect down there: "All the bones are gone. There are no bodies down there. "There are boots and shoes and clothes that show where people were 100 years ago, and that is very somber."The world's largest passenger ship at the time, the Titanic sank after hitting an iceberg, just five days after departing New York on April 10, 1912. Of the 2,224 passengers and crew on board, more than 1,500 people were killed.


Japan built plane-carrying subs to attack US cities during World War II.

Enormous I-400-class subs were supposed to bring the fight to US shores, launching planes to drop bombs on American cities and bases during during World War II. But wartime shortages limited the program, and the tide of the war turned against Japan, foiling the ambitious project.On August 28, 1945, two US destroyers intercepted a massive Japanese submarine several miles off the coast of Honshu, Japan's biggest island. The submarine, which was larger than either US ship and nearly as wide, surrendered without incident. A day later, the US submarine USS Segundo found a similar Japanese submarine nearby. After a brief escape attempt, the Japanese crew, knowing the war was over and they were out of options, surrendered. The captured submarines were enormous — 400 feet long and 39 feet wide, easily making them the largest submarines in the world at the time. They also had a massive empty chamber in their center, leading the first Americans who boarded them to believe they were for cargo. Later the Americans learned the truth: The chamber was actually a hanger, and the two vessels were I-400-class submarine aircraft carriers — one of the Japanese Empire's greatest secret weapons.  I-400-class, known to the Japanese as the Sen Toku type, was the brainchild of Adm. Isoroku Yamamoto, commander of the Combined Fleet and mastermind of the Pearl Harbor attack. Yamamoto, knowing Japan could not withstand the US's full might once it recovered from Pearl Harbor, was convinced that attacks on mainland American cities would dissuade the US from striking back in the Pacific.But Japan could not spare the carriers or battleships needed for such attacks. Inspired by the success of Germany's U-boats, Yamamoto decided on a new weapon: submarine aircraft carriers. The concept was not new. Submarines had experimented with carrying aircraft as early as World War I, and Japan's new Type B-1 submarine was equipped with a hangar for a Yokosuka E14Y1 floatplane. But those subs could only carry one aircraft used only for reconnaissance. Yamamoto wanted subs capable of holding multiple aircraft that could carry the largest bomb or torpedo in the Japanese arsenal. Yamamoto submitted a proposal for such submarines on January 13, 1942. A little over a year later, Japan began building the first purpose-built submarine aircraft carriers in history. The subs were truly a marvel of engineering. Double-cylinder hulls supported the sub's massive weight and provided stability on the surface. The hulls were also covered in an anechoic coating, based on a German design, to absorb sonar waves. They had a heating system to warm aviation fuel before takeoff, a compressed air catapult to launch the planes, and a hydraulic crane to lift the planes from the water after they landed. The hangar carried three specially designed Aichi M6A1 Seiran floatplanes that could fold their wings, tail fins, and horizontal stabilizers. The planes could carry one Type 91 torpedo, two 551-pound bombs, or one 1,874-pound bomb. For takeoff, the Seirans would be loaded on the catapult, fitted with floats, armed, and then launched. All three could be launched in 30 to 45 minutes. The subs were also heavily armed, with one 14 cm deck gun aft of the hangar, three triple-mounted and one single-mounted 25 mm AA guns on the deck, and eight torpedo tubes. They were designed to travel thousands of miles without refueling. The original plan called for 18 I-400s to be built to bomb cities on US coasts. But by the time the first I-400 was completed, Japan had suffered major setbacks that hampered the project. Yamamoto, the subs' chief advocate, was killed in an air battle in April 1943. Without his backing, the program was no longer given top priority and the order was cut from 18 to 5. Wartime shortages meant only three were completed. The first, I-400, was commissioned in December 1944. I-401 followed a month later and I-402 in July 1945. By the time the first two subs were completed, the war had turned decisively against the Japanese. Conventional bombing of US cities with so few aircraft was pointless, and plans to drop plague-infested flea bombs to start a pandemic were called off because they were too extreme. A plan was made to use the subs to launch a kamikaze attack on the Panama Canal to slow down American ships, but by July 1945, most of the US Navy was already in the Pacific. A final plan was made to attack the major US Navy base at Ulithi Atoll. I-400 and I-401, each with an accompanying sub, would rendezvous off Ulithi and launch six Seirans in a kamikaze attack. The Seirans were even painted in US markings in an attempt to deceive the Americans, a violation of the rules of war. But the attack never happened. The atomic bombings of Hiroshima and Nagasaki, along with the Soviet invasion of Manchuria, forced the Japanese to surrender on August 15. A day later, the subs were ordered to cancel their attack. As they returned to Japan, they launched their Seirans into the sea, fired all torpedoes, and destroyed all documents. Shortly after the subs surrendered, the commander of the Ulithi attack, Cmdr. Tatsunosuke Ariizumi, shot himself. After the war, the Soviets made it known they wanted to inspect the I-400s. Unwilling to let the new weapon fall into the wrong hands, the US scuttled them. I-402, damaged in a previous US air raid, was sunk off the Goto Islands on April 1, 1946. The other two were taken to Pearl Harbor and studied extensively before being scuttled in May and June 1946. Their final locations were kept secret until I-401 was discovered in 2005. I-400 and I-402 were discovered in 2013 and 2015, respectively. Although they never saw action, the I-400-class revolutionized submarine warfare, showing that subs could carry offensive weapons capable of hitting land-based targets. This led directly to today's ballistic-missile submarines — in fact, the I-400s were the largest submarines ever constructed until the nuclear-powered missile submarines of the 1960s.


Australia's Collins Class submarine has limited ability to save trapped submariners

A former Navy clearance diver who helped produce the first rescue system for Australia's Collins Class submarines has warned the fleet's interim safety equipment has limited ability to save trapped submariners. Former Navy clearance diver Captain Anthony Miller warns Australia's submarine rescue system is inadequate and must be quickly replaced. Defence insists the current equipment is suitable and can be sustained into the late 2020s. Independent senator Rex Patrick fears crews of Collins Class submarines are at risk. Last week the ABC revealed Defence was considering cancelling a $297 million contract with a US company to provide a new "submarine escape rescue and abandonment system" by 2022. The revelations have prompted a 50-year veteran of the military to warn Australia's ageing submarine rescue system has severe limitations and any delays in acquiring a replacement could open a dangerous capability gap. Captain Anthony "Dusty" Miller, who helped introduce the "Remora" remotely operated rescue vehicle to Australia in 1995, said he was speaking out publicly over deep concerns held within the submariner community. "Seeing what's happening today with the possible cancellation of the current contract, myself and others are very concerned with the safety consequences from this," he told the ABC. Since 2009, the Royal Australian Navy's (RAN) submarine rescue system has been the British-built LR5 manned submersible. That system is scheduled to reach its end of life in 2024. Captain Miller warned the LR5 could only dive to a maximum depth of about 400 metres in mild sea conditions. "Our main concern is what happens if we have a submarine sink in a depth further than 400 metres," he said. "How do we rescue the submariners? "It can only launch in very calm conditions and it can only swim or operate in currents that are benign. Here in Australia, we have some of the worst conditions". In 2018 Defence signed a deal with Phoenix International (Australia) to supply an LR5 replacement able to support both the Collins Class fleet and Australia's yet to be built Attack Class submarines. "SEA1354 Phase 1" has now been placed on Defence's list of troubled projects but Captain Miller warns if the Department cancels the deal it could delay a new rescue capability by five or six years. "A good estimate [is] five years before we get a top-rated system as against the stop-gap system that we have at the moment," he said. Defence insists the current submarine rescue system "can be sustained in operational service into the late 2020s" and it has rejected suggestions it has limited ability to save submariners. "The current submarine rescue capability has an operating profile suitable for conduct of rescue operations with the Navy's submarine fleet," the Department said in a statement. "This takes account of our operating areas and consideration of the potential scenarios under which submarine rescue would be performed." The Chief of Navy insisted the Collins Class boats were safe and said the Navy had appropriate measures in place in case a rescue operation was needed. In a statement, Vice Admiral Mike Noonan insisted safety was Defence's "number one priority" and said the Navy's rescue systems were tested and certified annually. But former submariner and now independent senator Rex Patrick backed concerns about a capability gap. "Submarine escape capabilities are a little bit like an insurance policy; you don't need it until you really need it and then it's got to be the best insurance policy around," he said. Senator Patrick said he was also concerned crews on board Collins Class submarines were exposed because the RAN had cancelled pressurised escape training.


  Unisex bedrooms for submarines.

Separate sleeping quarters for men and women on submarines have been scrapped - a move the federal government says should offer women more career opportunities. Both sexes will now bunk together on all three of Australia's operational submarines, doing away with the usual female-only six-berth cabins. Defence Science and Personnel Minister Warren Snowdon said the old setup meant that women sometimes missed out on postings because of a lack of bed space. "This move will ensure that our female submariners access the same training and career progression opportunities as their male crew mates," he said in a statement on Wednesday. Women, who began working onboard the navy's submarines in 1998, were previously restricted to working on only two Australian navy submarines which had female cabins. He said officers and senior sailors had completed successful trials of the new system. Strict rules will apply to privacy. Mr Snowdon said new rules relating to women will also be brought in, preventing women from being posted where they are the only female onboard, or where there are no senior female officers. If there are only two women serving on a submarine and one is posted elsewhere, she will be replaced by another female. The first unisex bedrooms for junior sailors will open in July, shortly after a community forum is held in Rockingham, Western Australia on June 23 to seek feedback on implementation. It's considered a first for the defence force, which usually provides separate accommodation for men and women. There are currently 560 submariners, and 44 of them are women, a spokeswoman from Mr Snowdon's office said.


$750,000, Visit Challenger Deep, the Deepest Point on Earth

This June, EYOS is offering the first-ever opportunity for well-heeled travelers to visit the deepest part of Earth’s oceans. The one-of-a-kind expedition will journey 35,853 feet down to Challenger Deep in the Mariana Trench. Paying travelers will spend roughly eight days as “Mission Specialists” (although no actual work will be required) with the Ring of Fire Expedition. The submarine dives will last as much as 14 hours. The one-way descent covers more than seven miles and takes more than four hours. The crew will spend another four hours exploring the bottom of the Pacific Ocean before beginning the more than four-hour ascent back to the surface. EYOS Expeditions teamed up with Caladan Oceanic to use the company’s flagship Limiting Factor submersible. The undersea vessel features a 90mm-thick titanium shell that’s been pressure-tested to nearly 46,000 feet with zero physiological stresses. It has already descended the Mariana Trench five times and is among the world’s only submersibles capable of multiple dives to that depth. Because of this near-crushproof design, passengers experience no change in atmosphere. EYOS claims the sub’s interior is actually quite peaceful and relaxing. Mission Specialists can kick back in one of two comfortable seats and take in the underwater scenery via three large viewports or multiple high-definition surround cameras. They will serve as fully integrated crew members who can oversee research work, help with film production, assist with sonar navigation, or do nothing at all. To visit Challenger Deep is a rare experience indeed. EYOS Expeditions founding partner Rob McCallum confirms, “This is the most exclusive destination on Earth. Currently, only three manned expeditions have ever been made to the bottom of Challenger Deep and more people have been to the moon than to the bottom of the ocean.” To put a finer point on it, more than 4,000 climbers have summitted Everest, and 562 have journeyed to space. The number of humans who have reached Challenger Deep? Just seven. This experience is available for $750,000. EYOS Expeditions is only accepting three Mission Specialists on a first-come-first-served basis. If you’d rather explore the oceans on your own, the Triton 1000/2 MKII personal submarine is available for $2.7 million.

The Million-Dollar Nemo Personal Submarine Is Towable with an SUV

U-Boat Worx.  At just 5 feet tall and roughly 8 feet square, the ultra-compact vessel boasts the smallest footprint of any such submarine on the market. It takes up less storage space than two Jet-Skis. What’s more, U-Boat Worx relied on featherweight materials to keep the Nemo’s total weight to about 2,500 kilograms (roughly 5,500 pounds), making it the lightest manned submarine available. That means it can be transported on a traditional boat trailer by most mid-sized pickup trucks and SUVs. The design of the hydrodynamic shell uses a transparent nosecone and octagonal thruster ducts to propel the Nemo to depths of more than 300 feet at up to 3 knots. Inside, the side-by-side occupants enjoy a comprehensive wireless communication system, plus exterior spotlights and floodlights and state-of-the-art navigation for exploring the ocean depths.

Among the world’s most well-heeled adventurers, personal submarines have grown into a surprising niche market in the last decade. The most luxurious feature onboard amenities worth of a high-end yacht, including climate control, premium audio, and a bevy of touchscreens. With its $2.7-million Triton 1000/2 MKII, for example, companies like Triton cater to James Cameron wannabes looking to explore the oceans on their own terms. For those interested in making a whole party of it, the Hyper-Sub is large enough to ferry entire groups of people up to 1,200 feet below the surface. The price? Reportedly north of $3.5 million. The Nemo is available for order with a base price of €975,000 (approximately USD $1.06 million). The good news is that U-Boat Worx is slating the submarine for series production. That means, unlike custom, built-to-order alternatives that require months of waiting to receive, the Nemo could be available immediately after purchase. Because no one should ever suffer a wait for their million-dollar underwater play toys.


Royal Navy Used a Mini Submarine to Take out Hitler's Battleship.

By mid-1942, the towering German battleship Tirpitz stood alone as the largest, most powerful warship in the world. Despite rarely venturing from her lair deep within the Norwegian fjords, her mere presence in the region forced the British Royal Navy to keep a large number of capital ships in home waters to watch over Allied convoy routes to the Soviet Union. The fact that the menacing shadow of one ship could hold so many others virtually captive in the North Atlantic at a time when they were desperately needed elsewhere was an intolerable situation in the eyes of Britain’s Prime Minister, Winston Churchill. “The greatest single act to restore the balance of naval power would be the destruction or even crippling of the Tirpitz,” he wrote. “No other target is comparable to it.” His obsession with the massive dreadnought was the driving force behind numerous Royal Air Force and Royal Navy attempts to sink her, but all had met with failure. The harsh reality was that inside Norwegian waters the Tirpitz enjoyed the protection of an ice-clad fortress bounded by sheer walls of solid rock and enhanced by German ingenuity. The natural defenses had been substantially bolstered by the deployment of countless artillery batteries and antiaircraft guns in the surrounding mountains while close-quarter protection for the 42,000-ton battleship was provided by layers of heavy antitorpedo nets that were closed around her like a second skin. Nothing had been left to chance, and within these all-encompassing defenses, the Germans confidently believed the “Lonely Queen of the North,” as the Tirpitz was known, was untouchable. To the Royal Navy looking on from afar, it was not an idle boast. Churchill wanted action, but the British Admiralty could see no way to strike at its nemesis. Naval bombardment was impossible due to the configuration of the intervening land, the fjords were mostly beyond the range of land-based bombers, and a raid by conventional submarines would be suicidal. However, from within the deepening gloom that beset the Royal Navy, a ray of light emerged. For a number of years, Navy engineers had been working on the prototype for a 51-foot, 30-ton, four-man midget submarine specifically designed to attack naval targets in strongly defended anchorages. They had developed, in effect, a complete submarine in miniature, but in lieu of torpedoes, the midgets were fitted with two crescent-shaped detachable explosive charges fitted externally on either side of the pressure hull. These mines, each containing two tons of Amatex explosive, were to be planted on the seabed directly under the target ship then detonated with a variable time fuse. It was deemed unlikely that the German command ever envisaged a raid by midget submarines or X-craft, as the British vessels were known, giving rise to optimism that at last an attack on the Tirpitz might stand a fighting chance of success. It was a tantalizing prospect. Winston Churchill, a renowned enthusiast of covert operations, had been greatly impressed by an earlier raid launched by Italian divers against British ships in Alexandria harbor and was eager for the X-craft to replicate a similar feat against the Tirpitz. His impatience to strike, however, was tempered by a Royal Navy that would not be rushed. While operational considerations dictated that these vessels would require many unique features, Navy experts were determined to develop the X-craft prototype along principles firmly grounded in reality and based on sound submarine practice. Within the halls of the Admiralty there was little enthusiasm for the unconventional, outlandish approach typical of the Special Operations branch. Even at this early stage of X-craft development, the sheer volume of pipes, dials, gauges, levers, and other vital equipment crammed inside the tiny hull left very little space for crew comfort. Navy planners recognized only that men possessing extraordinary self-control could cope with the claustrophobic conditions, and they sought volunteers “for special and hazardous duty” from among newly commissioned Royal Navy officers. The candidates, including many from Australia and South Africa, were not told what the mission entailed, but over the next few months, they were filtered through rigorous selection criteria. The physically unsuitable, the timid, or men with a “death or glory” outlook were steadily weeded out. Those who made the grade quickly found themselves undergoing intense training and theoretical courses on the X-craft. Training and weapon development proceeded simultaneously, as further modifications, tests, and sea trials were conducted until the final construction design was approved. With the aid of civilian firms, the first six vessels, designated X-5 through X-10, rolled off the line to form the fledgling 12th Submarine Flotilla. As the momentum of the operation gathered speed, bold theory predictably collided head-on with practical application. Before any attack could be launched, a number of significant roadblocks would need to be cleared, not the least of which involved getting the X-craft to Norway. Experts agreed that German patrols and air reconnaissance ruled out launching the vessels from a depot ship near the Norwegian coast, and a weeklong journey across the North Sea was considered beyond the endurance of the four-man crew. They would be completely exhausted before they ever reached the target. It was a vexing problem, but after much deliberation it was decided that the midgets would be towed to the operational area behind patrol submarines using 200-yard manila or nylon cables. Even under tow, however, the 1,200-mile journey would still take eight days, so “passage crews” would be trained to ferry the craft to the target area. Then these men would be swapped with the “operational crews” who would make the voyage in the towing submarines. These transit crews would play a vital, yet largely unsung role in the operation. Theirs would be an exacting, demanding duty in which they were to remain virtually submerged throughout the entire journey, only coming to the surface every six hours for 15 minutes to ventilate their hulls. It promised to be a voyage of incredible hardship, and few envied them. Another critical factor in the planning was the timing of the raid. By early 1943, the Norwegian Battle Group of Tirpitz, the battlecruiser Scharnhorst, and the pocket battleship Lutzow had relocated to new berths within the small landlocked basin of Kaafjord, northern Norway. The German ships were now anchored five degrees north of the Arctic Circle where there was no darkness in summer and no light in winter. Summer was unsuitable for a British attack because the X-craft needed the cover of darkness to recharge their batteries; winter deprived them of daylight to make visual contact with the target. The most favorable times for an attack occurred during the two occasions each year when daylight and darkness were equal, the equinoxes in March and late September. March was too soon, so the Admiralty settled on late September with the attack to go in on September 22. Navy planners had been swayed by intelligence reports from Norwegian agents indicating that on this date the Tirpitz’s 15-inch guns would be stripped and cleaned, and her sound detection equipment would be down for routine servicing. In June 1943, specialized training for what came to be called Operation Source started in earnest when men and machines moved to the secret wartime base known as Port HHZ in Loch Cairnbawn, northern Scotland. Amid tight security, the Navy had designed a course that replicated the fjord up which the men would travel to attack the Tirpitz and her escorts, Scharnhorst and Lutzow. Now putting their new X-craft through trials, the men vying for selection carried out simulated attacks, rehearsed towing procedures behind larger submarines, and perfected techniques for cutting through antisubmarine nets. The men grew accustomed to the squalid, cramped interior of the vessels, but they never learned to enjoy it. Throughout their arduous training, the strengths and weaknesses of the volunteers were constantly evaluated; everything they did and said during these interminable months played a role in determining who would go and who would be left behind. If the mission were to stand any chance of succeeding, the personnel conducting it would need to be the very best, both mentally and physically. The Navy recognized that a midget submarine would get the men to within striking distance of the Tirpitz, but it would take cold-blooded courage and fierce determination to breach the defenses and sink her. Finally, after nearly 18 months of training, planning, and construction, Operation Source was ready for the ultimate test. The crews had been finalized, and among those selected was a 26-year-old Scotsman, Lieutenant Duncan Cameron, Royal Naval Reserve, whose natural leadership qualities and stout character saw him awarded the command of X-6. Another successful candidate was a 22-year-old veteran of the submarine service, Lieutenant Godfrey Place RN DSC, who took command of X-7. These remarkable men were destined to play pivotal roles in what was to be one of the most daring exploits of the entire war. The Admiralty’s operational plan called for each pair of submarines to make their way independently to a position west of the Shetland Islands. From this point, they would sail on parallel courses approximately 20 miles apart to the jumping-off point at Soroy Sound, some 11 miles off the Norwegian coast and almost 100 miles from Kaafjord. From this location, the X-craft would negotiate their way independently up Altafjord via Sternsund, cut their way through the nets at the entrance to Kaafjord, and then slip under the enclosures surrounding each of the ships to lay their charges. X-5, X-6, and X-7 would strike at the Tirpitz; X-8 at the Lutzow; and X-9 and X-10 at the Scharnhorst. It was an extraordinary undertaking, but these were extraordinary times and the stakes were high. Shrouded in secrecy, the boats sailed from Loch Cairnbawn behind their parent submarines on the night of September 11-12, 1943. Ahead lay 1,200 long, gray sea miles to Norway. As a select few watched the motley fleet disappear into the gathering darkness they knew that nothing like this had ever been attempted before. They wondered how many, if any, would make it home. Operation Source was, in so many ways, an experimental undertaking. There had been little practical experience to draw upon, and planning staff anticipated the likelihood of mishaps en route—they seemed inevitable. One of the many unknowns involved the reliability of the manila towlines. Nylon was the superior material, but only three were available in time for the mission, and it was hoped that the manila lines would work—but nobody knew for sure. As events transpired, the doubts surrounding their suitability would soon be tragically borne out. After four uneventful days of passage, the weather began to rapidly deteriorate on September 15. As the larger vessels pounded through the mounting seas, life for the passage crews soon became unbearable. Wretched with debilitating seasickness, the men could neither stand properly nor lie down comfortably as they wrestled around the clock with their charges, which, on the end of their towlines, where being tossed and pitched about like kites in a storm. The stress loads on the cables increased dramatically as the vessels surged as much as 100 feet through the water, and eventually the manila lines to X-8 and X-7 succumbed to the strain and parted. The passage crews in both the X-craft realized almost immediately what had happened and surfaced. It was no easy task to bring them both back under tow with auxiliary lines, and many hours were lost before the journey could continue. The troubles for X-8, however, were far from over as a water leak in the starboard mine gave the vessel a pronounced list. The crew struggled hard to maintain control, but it soon became clear that they would need to jettison the charge and continue with only one. The faulty explosive was put on “safe” and released to the depths, but a short time later the port mine also developed a leak. With little alternative, it too had to be jettisoned. It exploded prematurely, causing substantial shock damage to the submarine’s internal systems. With the battered X-8 now unable to dive and close to foundering, the decision was made to scuttle her. The manila tows soon claimed another casualty when the cable to X-9 suddenly snapped. Unlike the previous line failures, this break occurred near the mother ship leaving the full weight of the waterlogged towline hanging off X-9’s nose. Already trimmed bow heavy to counteract the upward pull of the parent vessel, X-9 dived out of control to the bottom of the North Sea, taking her transit crew with her. Not only defective equipment threatened to derail the mission. At 0105 on the morning of September 20, Lieutenant Place, who was now aboard X-7, brought the vessel up to ventilate. The towing submarine had also surfaced to find itself on a collision course with a drifting mine. Following evasive action, the crew watched the mine pass by only to see their wake drag the mine’s mooring line onto the tow cable to X-7. In a few seconds, the lethal charge slid down the hawser and wedged itself in the bow of the X-craft where it bounced up and down with the pitching seas. Lieutenant Place immediately scrambled along the deck casing and, as the wind and spray tore at his clothes, calmly untangled the mooring line from the bow, then deftly kicked the mine clear with his boot. The unwelcome stowaway soon disappeared from view and the voyage resumed. By approximately 1800 on September 20, the four remaining X-craft had finally made their landfalls seaward of Soroy Sound as scheduled. Last minute reconnaissance over the target area, however, indicated that neither the Scharnhorst nor Lutzow were in their berths. With X-8 and X-9 already lost, the Admiralty decided that the four remaining submarines were to attack the Tirpitz. By 2000, the X-craft had successfully slipped their tows and set a course for the declared minefield at the entrance to Sternsund. There was no turning back now; they were on their own. With X-6 running on the surface, Lieutenant Cameron took up lookout duty on deck as his craft steadily motored through the short arctic night toward the coast. Skirting the outer rim of the minefield, X-6 passed safely through the first of many obstacles, and soon Cameron could make out the rugged peaks towering on either side of the entrance to Stjernsund, a narrow passage of water leading to Altafjord. The mouth of Stjernsund was protected by shore batteries and torpedo tubes, and with the onset of dawn Cameron submerged to 60 feet and quickly slipped through with the incoming tide. He waited until he was about a mile inside the fjord then cautiously brought X-6 up to periscope depth and scanned the glassy water for any signs of trouble. It was such a beautifully tranquil place that it was hard to believe that violent death could be only a matter of moments away; it was a sobering thought, and Cameron dived and continued his journey concealed in the gloom of the shaded northern shore. So far, everything had gone smoothly, but they all knew the real test was yet to come. The other three X-craft had also passed through the entrance at Stjernsund without difficulty, but water seeping into X-10 caused an electrical short circuit that disabled both her periscope and gyrocompass. Despite valiant efforts to repair the defects, the bitterly disappointed crew realized that, with their craft hopelessly crippled, they were out of the running. To avoid compromising the mission, they would spend the daylight hours of September 22 on the bottom before eventually retracing their steps out of the fjord. The original attacking force of six had now been whittled down to just three, and there were still many hard miles to travel. The crew of X-6 expected to reach the inner end of the waterway near Altaford by last light and planned to spend the night among the Bratholme group of islands to recharge the batteries and prepare for the attack the following morning, September 22.They were making good progress, and despite the rigors of the 1,200-mile journey, X-6 had been handed over in near faultless condition. But, as the day progressed, things started to go awry. A water leak in one of the side charges had steadily worsened, giving the vessel a severe list to starboard, and her automatic helmsmen had broken down, but of most concern was her periscope lens, which had begun to continually flood. The leak was discovered to be outside the hull and unrepairable. The periscope would therefore have to be tediously stripped down and emptied of water after nearly every use. In isolation, the mechanical failures did not present insurmountable problems, but a reliable periscope was essential for Cameron to safely conn the craft up the fjord. Its slender shape had been specially designed to minimize water disturbance, but such a feature counted for nothing if he could not see anything through it. When the action started the following day, he prayed that it would not let him down. With the onset of darkness, X-6 maneuvered into a small, desolate brushwood cove, and while his crew was below preparing for the trials ahead, Cameron climbed out on the deck casing to look around. In the distance, he could see the lights of the large German destroyer base at Lieffsbotun and the town of Alta beyond, but secreted away in their small hideaway it was dark, bitterly cold, and silent—or so he thought. Suddenly, not more than 30 yards away, the door to a cabin burst open, bathing the area in bright light. Cameron froze, barely able to breathe, as male voices trailed out over the water. Within a few seconds, the door was closed and Cameron was once again swallowed up in the darkness. Quickly recovering from the shock, he decided to find somewhere else to lay up for the night. However, upon leaving the small harbor, X-6 was nearly run down by a fishing boat only to then narrowly avoid another vessel coming from the opposite direction. It was a nerve-wracking experience, and Cameron ensured that their next stopping place was remote and uninhabited. While keeping watch topside in the still arctic night, he reflected on what had been a very eventful 24 hours. It was both surreal and exhilarating to realize that in the midst of the most destructive war the world had ever known, four Royal Navy seamen could actually be sitting squirreled away deep inside an enemy fleet anchorage listening to the BBC and drinking cocoa. The wonder of the moment was shattered at 2100 when a volley of star shells and searchlights erupted from the destroyer base across the water. Had the Germans detected one of their comrades? They waited anxiously for something to happen, but to their relief no alarms were sounded, no engines were heard to start, and soon all was quiet again. Cameron had no idea what the commotion had been about, but he did know that he would be happier once they were on their way. At 0130 on the morning of September 22, Cameron went over his attack orders once more, then destroyed them. Prior to leaving Scotland, the X-craft commanders had taken precautionary measures to avoid blowing each other up by agreeing to drop their cargoes between 0500 and 0800 with charges set to explode between 0800 and 0900. Cameron planned to unload his bombs at 0630, then retreat out of the fjord, but when he tried to preset the timers he found the fuses on the port side explosive continually shorted out. There was no way of knowing when it would explode. By now the mechanical attrition was sapping the crew’s confidence, but the young officer was determined to press on. With little discussion, he gave his orders, and at 0145 they set a course for the Tirpitz. The final stage of the attack was underway. The nets covering the mouth of Kaafjord were 158 feet deep and included a 437-yard-wide boom gate fitted near the shallow southern shore. By 0400, X-6 had maneuvered to within half a mile of these formidable defenses, and her diver was suiting up in readiness to cut a hole through the antisubmarine netting. As they closed to within 30 feet of the mesh, the sound of propellers became audible overhead as a Norwegian trawler headed for the boom gate. Cameron realized it must have been open and without hesitation brought X-6 to the surface. The crew could scarcely believe what he was going to do as he maneuvered into the wake of the coaster and with incredible audacity proceeded through the gate in broad daylight. It was a torturous passage as they waited for an alarm to be sounded, but, incredibly, they made it through without detection and immediately dived. They could hardly fathom their luck. Perhaps in the choppy water the Germans mistook the low silhouette of the X-craft for a towed barge or raft. In any case, Cameron’s bold maneuver had paid off and by guess and by God the small submarine began groping its way up the fjord toward the Tirpitz, which was now only three miles away. Through the faulty periscope, Cameron spied a waterway crammed with German warships of every size, and it was chilling to realize that to reach the Tirpitz he would have to slip right through the middle of them. A tanker sitting at anchor refueling two destroyers lay directly between X-6 and the Tirpitz, and by dead reckoning he set a course that would, in approximately two hours, take them past the tanker’s stern. It was always going to be a harrowing journey, but the source of most anxiety for the crew arose from the noise generated by the submarine’s trim pumps. They would have to remain in constant use to maintain the craft’s buoyancy in the differing water density, but the sound they emitted was precisely what a hydrophone operator would be listening for. Progress up the fjord was agonizingly slow, but after two hours Cameron expected to be somewhere near the tanker’s stern and returned to periscope depth to steal a quick look. The hazy image in the lens was enough to send him reeling back in horror; X-6 had surfaced midway between the bow of a destroyer and her mooring buoy. He immediately crash dived to 60 feet, the crew shut down the craft, and they waited. How could they not have been seen or detected by a listening post? These lengthy spells of inactivity punctuated by moments of sheer terror were as taxing on a man’s strength as a grueling marathon, but as the minutes ticked by with no German response, Cameron cautiously pressed on again. By 0700, X-6 had come within reach of the battleship’s antitorpedo netting, but since passing into Kaafjord the submarine had begun to labor severely. She was in fact barely seaworthy. Cameron once again had to come up to periscope depth to gain his bearings. It was an incredible risk in such a small waterway, but at this vital stage it would have been impossible to navigate their way to the Tirpitz by guesswork alone. Through the faulty lens, he could make out the ship, but as he began scanning the water around her, the periscope motor burned out, filling the submarine with choking smoke As X-6 submerged to contain the fire, Cameron sensed the despondency of the men. They had given their all in unimaginable discomfort for 35 hours straight, but faulty workmanship and defective equipment were undermining their every move. However, the predetermined attack period was fast approaching. Time was now critical. Inside the stifling hot control compartment, heavy with fumes and condensation, stony faces with bloodshot eyes stared at one another in the gloom. They were clearly showing the strain, but nobody could bring themselves to say what they all were thinking. They had no idea how the other X-craft had fared, but if the mechanical defects of X-6 were any indication, they had to assume they were the only ones who had made it this far. little was said, but clearly no one wanted to admit defeat 46 yards from the ship they had come to destroy; an opportunity like this might never come again. The decision was made to press on, but the crew had no illusions about its chances. Even if they remained undetected, X-6 was in no condition to make good an escape. None of them expected to be leaving Kaafjord. Hugging the north shore, X-6 dived to pass under the nets, which were believed to have been no deeper than 60 feet. But after several attempts at various depths, it was realized that the mesh went all the way to the bottom. The Admiralty intelligence was wrong, and now, at this critical moment, there was no way through. The latest setback came as a body blow, but Cameron, dizzy with fatigue, would not let the mission end like this. His blood was now boiling, and he was determined to find another way in. He brought the vessel to periscope depth once again to check the boat gate located close to the shore and spied a picket launch about to pass through. With a reckless disregard for the danger, Cameron surfaced into the wash of the small boat. The ploy had succeeded at the entrance to Kaafjord, and maybe it would work again. Quickly juggling the pump controls, the crewmen motored through the gate in broad daylight right behind the picket boat, bumping and scraping the bottom as they did. Surely, this time their boldness would be their undoing, but, remarkably, they made it through unnoticed. As the boom gate closed behind them, Cameron took X-6 down into deeper water and set a course that would take them under the stern of the Tirpitz. Like silent assassins sliding through the shadows, they inched their way through the frigid waters to within striking distance of their target. Suddenly the X-6 ran aground and momentarily broke the surface less than 200 yards from the battleship. The disturbance was seen by a lookout, but British luck continued to hold when the sighting was dismissed as being merely a porpoise and no alert was raised. The German sailors on Tirpitz had endured many false alarms over the years and now avoided instigating them for fear of ridicule. Inevitably, though, Cameron’s run of luck finally ended a few minutes later when X-6 careered into a submerged rock that wrecked the gyrocompass and thrust the vessel to the surface 80 yards abeam of the ship. There was no mistaking what she was this time, but the sighting of X-6 caused considerable confusion aboard the Tirpitz. An incorrect alarm sent men scurrying to secure watertight doors instead of their action stations, and vital minutes were lost before the correct submarine alert was sounded. Even then, few senior officers believed a submarine could have gotten through. The X-craft was too close for the ship’s big guns to depress sufficiently to engage her, so crewmembers opened fire with small arms and threw grenades. Now the crew of X-6 knew that the Germans were aware of their presence. They no longer had to worry about what might happen; it was now a matter of completing their mission before it did happen. Being in the line of fire threw off the fatigue that had enveloped Cameron’s men and rekindled their determination to hit back. They too had powerful weapons, and they were now intent on using them. As bullets churned up the water around the vessel, Cameron quickly dived, but with the periscope now almost completely inoperable and the gyrocompass out of action, he had no idea which way he was heading. Oblivious to the chaos unfolding above him, he blindly groped his way toward what looked like the shadow of the ship but fouled a wire hanging over the side and was stuck fast. After desperate maneuvering, the submarine broke free of the snag only to shoot to the surface again close to the port bow. Undaunted by the hail of bullets once again striking the hull, Cameron took the submarine down and backed her under the Tirpitz where he quickly released the charges beside B Turret. With no hope of escape, the exhausted crew destroyed its secret documents and equipment. As the sailors brought X-6 to the surface to surrender, Cameron ordered her sea cocks opened and her motor left running full astern with the hydroplanes to dive. As they opened the hatch, the firing immediately stopped and the men scrambled onto the deck. A launch from the ship was soon alongside to pick them up, and a German officer tried to secure a tow to the X-craft but the line was hastily cut as the submarine began to sink, almost taking the launch down with her. The four prisoners were taken to the ship, and to the surprise of the Germans, smartly saluted the colors as they stepped onto the deck. Under guard, they stood huddled together looking bedraggled and physically spent, wondering what the future held for them as the minutes ticked by. On the express orders of the Tirpitz’s commander, Captain Hans Meyer, the men were immediately given coffee and schnapps. Meanwhile, at almost the same instant Cameron and his crew were scuttling their vessel, Lieutenant Place in X-7 was sitting astern of the Tirpitz, preparing to offload his deadly cargo. Earlier in the morning, he had literally climbed over the nets at Kaafjord but had soon become entangled in the netting around Lutzow’s empty birth. After struggling desperately for an hour, Place finally broke free only to become entangled in Tirpitz’s netting. The violent effort undertaken to break loose had damaged his gyrocompass, and the craft broke the surface at 0710. With the Germans at that moment occupied with X-6, Place was not seen. Diving once again, Place, like Cameron before him, found that the nets went all the way to the bottom, but without realizing it he had fortuitously slipped through an opening on the seabed. By this time he had completely lost his bearings and had come up to periscope depth to discover the Tirpitz only 98 feet away. He immediately submerged and made his run to the target at a depth of 40 feet. Hitting the ship on the port side, the X-7 slipped under her keel. At this point, Place could hear the detonation of grenades around Cameron’s X-6 but assumed they were meant for him. Sidling along the hull, he placed one charge beneath the bridge and the other near the stern under the aft turrets. Each was set to explode in approximately one hour’s time. It was now 0720, and Place attempted to escape, but without a compass he would have to guess his way back to the opening on the seabed. Sliding over the top of the first net, he was spotted by the Germans but disappeared from view. After an hour trying to find the opening, he only succeeded in getting himself entangled again. This time he was stuck fast, fully realizing he was about to be destroyed by his own charges. Aboard the Tirpitz, the Germans had at first refused to accept that Cameron and his crew were British. They suspected them of being Russians and were unwilling to believe they could possibly have come all the way from England to Kaafjord in such a small submarine. Passing crewmembers mocked the prisoners for not having used their torpedoes when they had the chance, but Captain Meyer, who had been studying his captives from the bridge, had grown suspicious. Privately, he greatly admired their courage and daring, but in his mind, they lacked the demeanor of men who had failed. Meyer was soon convinced that they had not been armed with torpedoes but had instead used mines either on the ship or on the seabed. Divers were immediately ordered over the side to check the hull, and attempts were made to move the ship by heaving on the starboard cable and veering on her port to swing the bows away from the likely position of the charges. Meyer had earlier considered taking the ship into the deeper water beyond its enclosure, but the sighting of X-7 outside the nets changed his mind. In any case, it would have taken over an hour to get the ship underway. The prospect of another submarine loose in Kaafjord had caused absolute pandemonium. Cameron and his men had also seen X-7 slide over the top of the nets earlier and had noticed that her mine clamps were empty. As guards herded them below, they could not let on that with eight tons of explosives beneath the ship, this was the last place they wanted to be! A short time later, at 0812, a series of colossal explosions violently heaved Tirpitz’s stern six feet out of the water. A German sailor who had also served on the Scharnhorst recalled the moment. “We’ve had torpedo hits, we’ve had bomb hits. We hit two mines in the channel, but there’s never been an explosion like that.” Lights failed, equipment was strewn in every direction, and men were hurled through the air like rag dolls. The four prisoners were dragged back onto the deck to be confronted with utter chaos and panic. “The German gun-crew(s),” one British sailor later recalled, “shot up a number of their own tankers and small boats and also wiped out a gun position inboard with uncontrolled fire.” Orders were issued, then countermanded, as officers tried to regain control of the men who were running in all directions. With tensions running high, the mood of the Germans had turned very ugly, and the British seamen were lined up against a bulkhead where an outraged officer, brandishing his pistol, demanded to know how many more submarines there were. When they refused to answer, Cameron was convinced they were about to be shot. It was not until Admiral Oskar Kummetz, the senior naval officer in the region, came aboard to find out what had happened that the situation was defused. He stopped on his way to the bridge, looked over the four bedraggled Englishmen, then curtly told his subordinate to put the pistol away. Below the water’s surface, meanwhile, X-7, instead of being destroyed by the explosion, had been wrenched clear of the netting. Place took her to the bottom to assess the damage but quickly realized that although the pressure hull was intact much of X-7’s mechanical controls and internal systems were beyond repair. Place tried to bring her up again but found X-7 was almost uncontrollable as she repeatedly broke the surface and was hit by gunfire from the Tirpitz. With little prospect of escape, Place decided to abandon ship, but he did not expect a warm reception. Surfacing near a moored gunnery target, the small submarine was immediately raked by intense small-arms fire. Place gingerly opened the fore hatch and began waving a white sweater, signaling his intention to surrender, and the firing stopped. As he leaped into the water and swam to the gunnery target, X-7 dipped her bow, allowing water to pour through the open hatch. The vessel quickly sank beneath the surface with three crew members trapped inside. One managed to escape later, but tragically, the other two drowned. Their bodies were later recovered by the Germans and reportedly buried with full military honors. The two survivors of X-7 joined their comrades aboard the Tirpitz but were bitterly disappointed see her still afloat. Following their transfer to the naval prisoner of war camp at Marlag-O, near Bremen, Germany, Cameron and Place, unaware of the damage they had caused, would spend a great deal of time discussing what they could have done to improve the outcome. On the other side of the Atlantic in London, Norwegian agents and Énigma decrypts provided detailed reports on the status of the wounded battleship, and Churchill was delighted. Although Tirpitz had not been eliminated, it was clear that she would be out of action for at least six months. Her four main turrets had been thrown from their roller-bearing mountings, her hull gashed and distorted, all three engines were inoperable, and the port rudder and all three propeller shafts were out of action. Five hundred tons of water had poured into her hull and, although her water integrity held, a number of hull frames were damaged beyond repair. She would in fact remain laid up in Kaafjord until April 1944 and was never to regain complete operational efficiency. So ended the first attack by British midget submarines and the first successful blow against the mighty Tirpitz, but it had come at a cost. All six craft were lost along with nine men killed and six taken prisoner. For their roles in this remarkable operation, described by Rear Admiral C. B. Barry, DSO, as “one of the most courageous acts of all time,” both Lieutenant Cameron and Lieutenant Place were awarded the Victoria Cross, Britain’s highest military decoration. Both men remained in the Royal Navy after the war, and Duncan Cameron attained the rank of commander before suddenly dying on active duty in April 1961. He was 44 years old. Godfrey Place retired a rear admiral in 1971 and died peacefully in 1994 at the age of 73. Mystery still surrounds the fate of X-5, commanded by Lieutenant H. Henty-Creer. His vessel was sighted near Kaafjord after the explosion, at 0843, but was raked with heavy fire from Tirpitz and claimed as sunk with all hands. Authorities believed that she had perhaps missed the first specified attack period and laid up in the fjord to plant her charges to follow the initial attack, then make her escape. There are many, however, including the young officer’s family, who believe that Henty-Crier and his crew had in fact planted their charges before being sunk. They speculate that the sheer force of the detonation beneath the stern of the Tirpitz indicated the presence of considerably more explosive than was deposited by X-6 and X-7 and that the 21-year-old Henty-Creer should have been awarded the Victoria Cross posthumously for his role. The controversy, which has continued since 1945, was reignited in 2003 when local Norwegian divers discovered what appears to be the wreck of X-5 in Kaafjord—minus her charges. Were they planted beneath the ship in 1943? Investigators are continuing the search for answers. The fate of the Tirpitz, however, is not in dispute. Her ill-starred career came to an abrupt end in Tromso Fjord on November 12, 1944, when she was attacked by stripped-down British Avro Lancaster bombers using the new 13,000-pound “Tallboy” bombs. A direct hit triggered a massive explosion in one of her magazines, capsizing the ship and killing over 900 officers and men. After the war, the wreck of what had once been the most powerful battleship in the world was declared the property of the Norwegian government and ingloriously cut up for scrap between 1948 and 1957.


Triton 24-seat DeepView tourist submarine

Triton submarines is the biggest name in deep-sea exploration submersibles, having built the extraordinary DSV Limiting Factor, a "deep-sea elevator" capable of popping down to the bottom of the Mariana Trench several times a week for extended visits. Now, the company has launched an incredible-looking tourist sub that can take 24 passengers, a pilot and a co-pilot down to 100-meter (328-ft) depths in air-conditioned comfort, providing panoramic views of the aquatic world through colossal 5.5-inch-thick (140-mm) acrylic windows. Where other subs offer restricted views, this thing is very close to a giant transparent tube, like a glass walkway through an aquarium, tall enough to stand in. The DeepView 24 is the first of a range of DeepView tourist submarines that can be specified in different lengths to accommodate between 12 and 66 passengers. Additional sections can be added six seats at a time; with the 24-seat version already 15.4 m (50.5 ft) in length and weighing 121,250 lb (55,000 kg), a 66-seater would certainly be a sight to behold and a pain in the butt to pull a u-turn in. Unlike the Deepflight Dragon 2-seater, which operates more or less like an upside-down underwater quadcopter and maintains positive buoyancy so it'll float to the surface if the power cuts out, the DeepView uses nearly 4,000 lb (1,800 kg) of variable ballast in addition to 8,820 lb (4,000 kg) of fixed main ballast to control rise and fall. Propulsion and steering are electric, and the work of two 20-kW (27-hp) main thrusters and four 12.6-kW (17-hp) Vertran thrusters. A big ol' lead-acid battery stores 240 kWh of energy; submarines are an interesting case in which energy density is more or less irrelevant since you need plenty of ballast on board, and lead-acid is significantly cheaper than lithium to boot. That battery is good for a full 14 hours of underwater tourism, with top speeds of 3 knots (3.5 mph/5.5 km/h). And if things get a little dark as you head a few hundred feet down, ten 20,000-lumen LEDs will light up the depths beautifully. The cabin looks like it means business, with screens and radios and rows of serious-looking red switches, but at the end of the day, the pilot drives the thing with a joystick and touchscreen. There are manual overrides in case of malfunction, and the whole thing is certified to International Classification Standards by DNV-GL. It's designed to float steady on the surface, where passengers can stand on a railed-in deck, and you won't have to be shaped like a submariner to get in the thing either, as it's got a "generous access hatch" suitable for "passengers with reduced mobility." Triton built this DeepView 24 for Vinpearl, a luxury hotel and resort chain in Vietnam that will start making ticketed dives in December this year off Hon Tre island in Nha Trang. Triton says it's a "quantum leap" forward from every other tourist sub built in the last 34 years – of which where have been less than 60 – and "competitively superior in all respects." To look at it, we don't doubt it. This looks like by far the comfiest and most immersive way to explore the sea floor that we've ever seen.


One of the Best Submarines.

While the United Kingdom’s powerful Vanguard-class grabs a lot of attention, the smaller Astute-class is also nuclear powered—and the UK’s largest nuclear attack submarines. The Astute-class is the Royal Navy’s most advanced nuclear-powered attack submarine and the successor of the previous Trafalgar-class. The first of the class, the Astute, was launched in 2007. Though the class is approximately 50 percent longer than the Trafalgar-class, it supports a smaller crew due to higher operation automatization. Thanks to its weapons suite, sonar package, and other onboard technologies, the Astute-class is one of the most advanced submarine designs in the world.  The Astute-class’ onboard weapons array is impressive. Astutes are equipped with 6 torpedo tubes that can fire 533-millimeter Spearfish torpedoes. These heavyweight torpedoes travel in excess of 150 kilometers an hour, or about 92 miles per hour while underwater, and were originally designed to intercept fast Soviet submarines. They are triggered by contact with an enemy hull or by using an acoustic listening device, are capable of detonation below a ship’s hull to maximize blast effect. Though the Astute-class does not have vertical onboard missile silos, it is nonetheless capable of firing American-made Tomahawk cruise missiles. Tomahawks are also fired from the Astute’s torpedo tubes. These missiles are ejected inside watertight containers, which launch the missile into the air once contact with the surface is made and can strike targets up to 1,000 kilometers, or over 600 miles away.  Interestingly, the Astute-class have forgone traditional periscope masts in favor or two shorter and more compact optronic masts. These new masts are essentially video cameras capable of thermal imaging and feed to high-resolution video monitors. They are also stabilized, ensuring their use in rough, pitching seas. In addition to a bow sonar array, the Astute-class also carries a towed array, and flank arrays on both the starboard and port sides. The Astute-class’ sonar has been mentioned as one of the best in the world.  In addition to advanced sonar, the Astute-class is covered in tens of thousands of anechoic tiles, essentially rubberized tiles injected with air cavities that adhere to the sub’s hull and are designed to absorb enemy sonar and reduce a submarine’s sonar “reflection.” Since the Astute-class are nuclear powered, they have virtually unlimited range. Endurance is limited only by crew requirements, namely food and water, which must be replenished once every 90 days. Onboard purification systems filter both water and air and allow the Astute-class to circumnavigate the world—without needing to surface. Despite the formidable armament and capabilities, the Astute-class has been involved in several incidents that call into question their capabilities. In 2010, the first of the class, Astute, ran aground while on a training exercise near the Isle of Skye, suffering minor damage. On the first day back at sea, the Astute again had to return to port due to a problem with a part in the onboard propulsion system. Additionally, the Astute had minor issues with reactor monitoring instrumentation and onboard electronics. The second Astute-class, the Ambush was also not problem-free, colliding with a merchant ship in 2016. The conning tower sustained a significant amount of costly damage, though the error was probably human in nature, as the Ambush’s Capitan had been training a group of students at the time of the accident. Despite the early mishaps, the Astute-class is quite capable, and likely one of the quietest submarine classes ever built for the Royal Navy. As such, it will likely ply the waves for many years to come.


Pakistan’s Mystery Submarine


An article that appeared last month in foreign media talked of a new mystery submarine in Pakistan which presumably meant for marines of the Special Services Group – SSG (N). Spotted on the quayside of Pakistan’s naval base in Karachi (PNS ‘Iqbal’), the submarine is assumed to be some 55 feet long by 7-8 feet across – much smaller than a regular submarine.  Yearbook 2015-2016 of Pakistan’s Defence Production Division (MoDP) had listed the “Indigenous design and construction of one Midget Submarine” as a target for 2016-2017.In 1965, Pakistan had awarded a contract to the Italian shipbuilding firm ‘Cos.Mo.S’ to design a SX-404-class midget submarine for Pakistan Navy, to be used as a Diver Propulsion Vehicle for launching marines. The SX-404 was the smallest submarines class then but could carry 12 personnel for special tasks and reconnaissance in shallow water. There were teething problems in torpedo specified by Pakistani Navy not matching with the SX-404 and compatibility with the mother submarine that would deliver the midget submarines. These were eventually delivered in 1971. During 1972-1973, Pakistan Navy bought six more SX-404-class submarine from Italy. One of these was lost in an accident and two were decommissioned in 1982-1983. The SX-404-class submarine program was phased out in early 1990s.Since then the SSG (N) has been operating three types of MG-110 submarines built locally in period 1993-1996 which are due for replacement. The Italian firm Cos.MO.S that designed these midget submarines has shut down but Italian submarine manufacture Drass has continued with these designs. However, the mystery submarine sighted at Karachi was even smaller than the midget submarine DG-85 produced by Drass. China revealed its new midget submarine design ‘MS200’ at Thailand’s Defense & Security 2017 exhibition held at Bangkok. This 200 ton single-hull submarine greatly differs from previous Chinese midget submarine designs. Speculation is that the MS200 is meant exclusively for export to countries like Pakistan. The MS200 is 30m long, carries 6 + 8 PAX, has an operating range of 1500nm, endurance of 15 days and carries 2 x 53mm torpedoes. At the same exhibition, China also displayed models of two more new midget submarines, MS600 and MS1100, both larger than the MS200. Both have endurance of 20 days can carry 15 personnel and a greater number of 53mm torpedoes. In 2015, Pakistan approved purchase of eight Hangor (Type 042 Yuan-class) submarines with a provision to construct four at Karachi Shipyard and Transfer of Technology (ToT) from China. In 2016, Pakistan awarded the contract to Turkey-based firm STM for modernizing its Agosta 90B submarines. The Type 042 and Agosta 90B are not midget submarines but Turkish firms STM (Savunma Teknolojileri Mühendislik ve Ticaret A.S.) were reportedly jointly developing a midget submarine with Pakistan. It is possible that either this new mystery midget submarine has either been purchased by Pakistan from Turley or produced locally in Pakistan under ToT from STM. Pakistan has very close relations with Turkey. Turkey’s President Recep Erdogan has repeatedly raised the Kashmir issue at international forums, even comparing Kashmir with the Palestine issue. Turkish shipyards are major supplier of warships to Pakistani Navy. Besides four new corvettes, Turkey has designed a fleet support vessel (FSV) for Pakistan, supports its submarine fleet and has signed a deal to sell 30 x T-129 attack helicopters that have been developed in collaboration with Italian company Finmeccanica (now Leonardo). In September 2019, Erdogan raised the Kashmir issue during the launch ceremony of new corvettes for the Pakistani Navy. Erdogan visited Pakistan in February 2020, where he said Turkey is Pakistan’s side over Kashmir and would support Pakistan from censorship by the Financial Task Force (FATF). The joint Pakistan-Turkey declaration made multiple references to Jammu and Kashmir. India issued a strong statement and gave a demarche to the Turkish envoy also. India signed a $2.3 billion (Rs 15,000 cr) deal with Turkey to jointly manufacture five 45,000 ton FSVs in the same month – February 2020. In the joint project between Hindustan Shipyard Limited (HSL) and Turkey’s Anadolu Shipyard (TAIS), TAIS will provide the ship design, supply key machinery equipment and provide technical assistance. TAIS was the lowest bidder for the contract to manufacture the FSVs in HSL. It appears the lowest bid and the $2.3 billons deal weighed in favour of Turkey, overlooking Erdogan’s anti-India attitude, Turkey-Pakistan’s naval cooperation (TAIS included) and the hardcore Islamist Pakistan-Turkey nexus.  According to photos shared by TAIS, the FSVs to be built at HSL could be similar to Pakistan Navy’s fleet tanker PNS Moawin, built in Pakistan under the design provided by Turkey’s STM. Pakistan has been using midget submarines since long which can be used for launching the SSG (N). Indian Marine commandos (MARCOS) similarly have their own 500-ton midget submarines designed by Larsen & Toubro and built by HSL. But the Pakistan-Turkey and Pakistan-China naval cooperation and boosting of the naval capabilities of Pakistan which has become the conduit for projection of China’s power towards the Arabian Sea and the Persian Gulf needs to be monitored. Chinese submarines have been observed parked in Pakistani ports periodicity. Increase in underwater capabilities will embolden Pakistan to use midget submarines to not only augment the sea denial of its harbours but launch the SSG (N) for offensive tasks along the coasts of India including for mining and sabotage of offshore installations. Chinese marines are already deployed in Djibouti and are to be deployed in Pakistan. They have been conducting joint exercises with Pakistan’s SSG (N) and will be based in Gwadar. A Chinese SEZ is coming up in proximity of Sir Creek and SSG (N) operations against India in this area is a possibility. Gwadar is projected as a commercial port at south end of the CPEC and considered unsuitable for submarine operations because of inadequate depth. But it would be naïve to assume China has taken it over for 49 years purely for commercial activity. It would indeed be dual use. Increasing the depth of harbours is no big deal for China considering what it has done in South China Sea for establishing military bases and reclaiming land at sea.  Chinese vessel ‘Tian Kun Hao’ can dig as deep as 35 meters under the sea floor and dredge 6,000 cubic meters in one hour.  In addition to Gwadar, a joint China-Pakistan naval and airbase is being constructed at Jiwani in the Gulf of Oman, as reported in Washington Times in January 2018. Chinese troop presence at Jiwani and Gwadar in conjunction Pakistani ports of Pasni, Omara and Karchi will provide control of the entire Pakistani coast to China. Recent reports in media indicate that China has been resorting to building underground tunnels to house its submarines and even warships as protection against surprise attacks. For China’s strategic submarine force, such tunnels have been built at Jianggezhuang Naval Base near Qingdao and another one at Yulin. Smaller tunnels have been dug at Xiachuan Dao and at Xiangshan. There are other tunnels that are away from submarine bases in order to avoid suspicion. Since the Pakistani coastline is the future oceanic front for supporting Chinese operations in the Indian Ocean, it stands to logic that China will resort to similar tunneling activities in conjunction Pakistan to provide added protection for their submarines. A recent article in US media speculates a futuristic submarine with electrical hull connectors, power generation and other systems to mount a laser weapon. Possibly this is already being worked upon by countries including China and should be a challenge for our R&D as well.


The explorers who set one of the last meaningful records on earth.


Sea level—perpetual flux. There is a micromillimetre on the surface of the ocean that moves between sea and sky and is simultaneously both and neither. Every known life-form exists in relation to this layer. Above it, the world of land, air, sunlight, and lungs. Below it, the world of water, depth, and pressure. The deeper you go, the darker, the more hostile, the less familiar, the less measured, the less known. A splash in the South Pacific, last June, marked a historic breach of that world. A crane lowered a small white submersible off the back of a ship and plonked it in the water. For a moment, it bobbed quietly on the surface, its buoyancy calibrated to the weight of the pilot, its only occupant. Then he flipped a switch, and the submarine emitted a frantic, high-pitched whirr. Electric pumps sucked seawater into an empty chamber, weighing the vessel down. The surface frothed as the water poured in—then silence, as the top of the submersible dipped below the waterline, and the ocean absorbed it. Most submarines go down several hundred metres, then across; this one was designed to sink like a stone. It was the shape of a bulging briefcase, with a protruding bulb at the bottom. This was the pressure hull—a titanium sphere, five feet in diameter, which was sealed off from the rest of the submersible and housed the pilot and all his controls. Under the passenger seat was a tuna-fish sandwich, the pilot’s lunch. He gazed out of one of the viewports, into the blue. It would take nearly four hours to reach the bottom. Sunlight cuts through the first thousand feet of water. This is the epipelagic zone, the layer of plankton, kelp, and reefs. It contains the entire ecosystem of marine plants, as well as the mammals and the fish that eat them. An Egyptian diver once descended to the limits of this layer. The feat required a lifetime of training, four years of planning, a team of support divers, an array of specialized air tanks, and a tedious, thirteen-hour ascent, with constant decompression stops, so that his blood would not be poisoned and his lungs would not explode. The submersible dropped at a rate of about two and a half feet per second. Twenty minutes into the dive, the pilot reached the midnight zone, where dark waters turn black. The only light is the dim glow of bioluminescence—from electric jellies, camouflaged shrimp, and toothy predators with natural lanterns to attract unwitting prey. Some fish in these depths have no eyes—what use are they? There is little to eat. Conditions in the midnight zone favor fish with slow metabolic rates, weak muscles, and slimy, gelatinous bodies. An hour into the descent, the pilot reached ten thousand feet—the beginning of the abyssal zone. The temperature is always a few degrees above freezing, and is unaffected by the weather at the surface. Animals feed on “marine snow”: scraps of dead fish and plants from the upper layers, falling gently through the water column. The abyssal zone, which extends to twenty thousand feet, encompasses ninety-seven per cent of the ocean floor. After two hours in free fall, the pilot entered the hadal zone, named for the Greek god of the underworld. It is made up of trenches—geological scars at the edges of the earth’s tectonic plates—and although it composes only a tiny fraction of the ocean floor, it accounts for nearly fifty per cent of the depth. Past twenty-seven thousand feet, the pilot had gone beyond the theoretical limit for any kind of fish. (Their cells collapse at greater depths.) After thirty-five thousand feet, he began releasing a series of weights, to slow his descent. Nearly seven miles of water was pressing on the titanium sphere. If there were any imperfections, it could instantly implode. The submarine touched the silty bottom, and the pilot, a fifty-three-year-old Texan named Victor Vescovo, became the first living creature with blood and bones to reach the deepest point in the Tonga Trench. He was piloting the only submersible that can bring a human to that depth: his own. For the next hour, he explored the featureless beige sediment, and tried to find and collect a rock sample. Then the lights flickered, and an alarm went off. Vescovo checked his systems—there was a catastrophic failure in battery one. Water had seeped into the electronics, bringing about a less welcome superlative: the deepest-ever artificial explosion was taking place a few feet from his head. If there were oxygen at that depth, there could have been a raging fire. Instead, a battery junction box melted, burning a hole through its external shell without ever showing a flame. Any instinct to panic was suppressed by the impossibility of rescue. Vescovo would have to come up on his own. For more than a year, the team trying to reach the deepest point in every ocean faced challenges as timeless as bad weather and as novel as the equipment they invented. Magnum Seven miles overhead, a white ship bobbed in Polynesian waters. It had been built by the U.S. Navy to hunt Soviet military submarines, and recently repurposed to transport and launch Vescovo’s private one. There were a couple of dozen crew members on board, all of whom were hired by Vescovo. He was midway through an attempt to become the first person to reach the deepest point in each ocean, an expedition he called the Five Deeps. He had made a fortune in private equity, but he could not buy success in this—a richer man had tried and failed. When the idea first crossed his mind, there was no vehicle to rent, not even from a government. No scientist or military had the capacity to go within two miles of the depths he sought to visit. Geologists weren’t even sure where he should dive. Vescovo’s crew was an unlikely assemblage—“a proper band of thieves,” as the expedition’s chief scientist put it—with backgrounds in logistics, engineering, academia, and petty crime. Some on board had spent decades at sea; others were landlubbers. For more than a year, they faced challenges as timeless as bad weather and as novel as the equipment they had invented for the job. They discovered undersea mountain ranges, collected thousands of biological samples that revealed scores of new species, and burned through tens of thousands of gallons of fuel and alcohol. In 1969, when Vescovo was three years old, he climbed into the front seat of his mother’s car, which was parked on a hill outside their house. He was small and blond, the precocious, blue-eyed grandson of Italian immigrants who had come to the United States in the late nineteenth century and made a life selling gelato in the South. Vescovo put the car in neutral. It rolled backward into a tree, and he spent the next six weeks in an intensive-care unit. There were lasting effects: nerve damage to his right hand, an interest in piloting complex vehicles, and the “torturous compulsion,” he said, to experience everything he could before he died. Victor Vescovo made a fortune in private equity, but he couldn’t buy success in this—a richer man had tried and failed. He grew up reading science fiction, and aspired to be an astronaut; he had the grades but not the eyesight. As an undergraduate, at Stanford, he learned to fly planes. Afterward, he went to M.I.T., for a master’s degree in defense-and-arms-control studies, where he modelled decision-making and risk—interests that later converged in overlapping careers as a Reserve Naval Intelligence officer and a businessman. Vescovo was deployed as a targeting officer for the NATO bombing of Kosovo, and, as a counterterrorism officer, he was involved in a hostage rescue in the Philippines. He learned Arabic and became rich through finance and consulting jobs, and, later, through a private-equity firm, Insight Equity, in the suburbs of Dallas, where he lives. Vescovo started going on increasingly elaborate mountaineering expeditions, and by 2014 he had skied the last hundred kilometres to the North and South Poles and summited the highest peak on every continent. He had narrowly survived a rock slide near the top of Mt. Aconcagua, in the Argentinean Andes, and had come to embrace a philosophy that centered on calculated risk. Control what you can; be aware of what you cannot. Death, at some point, is a given—“You have to accept it,” he said—and he reasoned that the gravest risk a person could take was to waste time on earth, to reach the end without having maximally lived. “This is the only way to fight against mortality,” he said. “My social life was pretty nonexistent, but it just wasn’t a priority. Life was too interesting.” He grew his hair down to his shoulders, and touched up the color, even as his beard turned white. On weekends, he used his private jet to shuttle rescue dogs to prospective owners all over the U.S. At sea, according to members of his expedition team, he spent hours in his cabin alone, playing Call of Duty and eating microwaved macaroni and cheese. But every age of exploration runs its course. “When Shackleton sailed for the Antarctic in 1914, he could still be a hero. When he returned in 1917 he could not,” Fergus Fleming writes, in his introduction to “South,” Ernest Shackleton’s diary. “The concept of heroism evaporated in the trenches of the First World War.” While Shackleton was missing in Antarctica, a member of his expedition cabled for help. Winston Churchill responded, “When all the sick and wounded have been tended, when all their impoverished & broken hearted homes have been restored, when every hospital is gorged with money, & every charitable subscription is closed, then & not till then wd. I concern myself with these penguins.” A century later, adventurers tend to accumulate ever more meaningless firsts: a Snapchat from the top of Mt. Everest; in Antarctica, the fastest mile ever travelled on a pogo stick. But to open the oceans for exploration without limit—here was a meaningful record, Vescovo thought, perhaps the last on earth. In 1961, John F. Kennedy said that “knowledge of the oceans is more than a matter of curiosity. Our very survival may hinge upon it.” Yet, in the following decades, the hadal trench nearest to the U.S. became a dumping ground for pharmaceutical waste. In September, 2014, Vescovo sent an inquiry to Triton Submarines, a small manufacturer in Vero Beach, Florida. He noted that he was a jet and helicopter pilot familiar with the “procedure-driven piloting of complex craft,” and outlined what became the Five Deeps Expedition. Patrick Lahey, the president of Triton, took up scuba diving when he was thirteen years old, and discovered that he felt more at home underwater than he did on land. The muted silence, the slow, deep breaths—diving forced him into a kind of meditative state. “I love the feeling of weightlessness,” he told me. “I love moving around in three dimensions, instead of two.” Lahey attended commercial diving school, to learn underwater welding and construction for dams, bridges, and oil-and-gas installations. “Just about anything you might do out of the water you could do underwater,” he said. “You bolt things, you cut things, you weld things together, you move things, you recover things.” Water conducts electricity, and sometimes, he added, “you can feel it fizzing in your teeth.” In 1983, when he was twenty-one, he carried out his first submarine dive, to fourteen hundred feet, to inspect an oil rig off the coast of Northern California. He was profoundly affected by the experience—to go deep one hour and surface the next, with “none of the punitive decompression,” he said. By the time Vescovo contacted him, Lahey had piloted more than sixty submersibles on several thousand dives. An expedition leader who has worked with him for decades told me that he is, “without question, the best submarine pilot in the world.” Patrick Lahey, the president of Triton Submarines. “It wasn’t really a business decision,” one of his engineers said, of the creation of the Limiting Factor. “He wanted to build this. Giving up was not an option.” Lahey co-founded Triton in 2007. The business model was to build private submersibles for billionaires, including a Russian oligarch and a member of a Middle Eastern royal family. (In the years leading up to the first order, Lahey used to be laughed at when he attended boat shows; now there are companies that build support vessels for yachts, to carry helicopters, submarines, and other expensive toys.) But his deeper aspiration was to make other people comprehend, as Herman Melville wrote, in “Moby-Dick,” that in rivers and oceans we see “the image of the ungraspable phantom of life; and this is the key to it all.” After a few dives, many of Lahey’s clients started allowing their vehicles to be used for science and filming. Vescovo didn’t care if Lahey sent him to the bottom of the ocean in a windowless steel ball; he just wanted to get there. But Lahey declined to build anything that didn’t have a passenger seat, for a scientist; a manipulator arm, for collecting samples; and viewports, so that the occupants could appreciate the sensation of submergence. Such features would complicate the build, possibly to the point of failure. But Lahey has a tendency to promise the reality he wants before he’s sure how to deliver it. “It wasn’t really a business decision,” a Triton engineer told me. “He wanted to build this. Giving up was not an option.” Lahey saw Vescovo’s mission as a way to develop and test the world’s first unlimited hadal exploration system—one that could then be replicated and improved, for scientists. Vescovo flew to the Bahamas, and Lahey took him for a test dive in Triton’s flagship submersible, which has three seats and is rated to a depth of thirty-three hundred feet. The third seat was occupied by an eccentric British man in his thirties, named John Ramsay, who didn’t seem to enjoy the dive; he was preoccupied with what he didn’t like about the submersible—which he had designed. “I never really had a particular passion for submarines,” Ramsay, who is Triton’s chief submarine designer, told me. “I still don’t, really.” What he does love is that he gets to design every aspect of each machine, from the central frame to the elegant handle on the back of the hatch. Car manufacturers have entire teams design a seat or a fender, and then produce it at scale. But nearly every Triton submarine is unique; Ramsay determines how he wants things to be, and a dozen or so men in Florida start building. Ramsay, who works out of a spare bedroom in the wilds of southwest England, has never read a book about submarines. “You would just end up totally tainted in the way you think,” he said. “I just work out what it’s got to do, and then come up with a solution to it.” The success or the failure of Vescovo’s mission would rest largely in his hands. The Limiting Factor is the only vehicle “that can get to the bottom of any ocean, anytime, anywhere,” Rob McCallum said. A submariner thinks of space and materials in terms of pressure, buoyancy, and weight. Air rises, batteries sink; in order to achieve neutral buoyancy—the ability to remain suspended underwater, without rising or falling—each component must be offset against the others. The same is true of fish, which regulate their buoyancy through the inflation and deflation of swim bladders. Ramsay’s submarines typically center on a thick acrylic sphere, essentially a bubble; release it underwater and it will pop right up to the surface. But acrylic was not strong enough for Vescovo’s submersible. At the bottom of the deepest trench, every square inch would have to hold back sixteen thousand pounds of water—an elephant standing on a stiletto heel. Ramsay settled on titanium: malleable and resistant to corrosion, with a high ratio of strength to density. The pressure hull would weigh nearly eight thousand pounds. It would have to be counterbalanced by syntactic foam, a buoyant filler comprising millions of hollow glass spheres. For the submarine to stay upright, the foam would have to go above the hull, providing upward lift—like a hot-air balloon, for water. “As long as the heavy stuff hangs in balance below the buoyant stuff, the sub will always stay upright,” Ramsay explained. The hull required the forging of two slabs of titanium into perfect hemispheres. Only one facility in the world had a chamber that was sufficiently large and powerful to subject the hull to pressures equivalent to those found at full ocean depth: the Krylov State Research Center, in St. Petersburg, Russia. Lahey attended the pressure test. There was no backup hull; an implosion would end the project. “But it worked—it validated what we were doing,” Lahey told me. Nearly every Triton submarine is unique. For the Limiting Factor, John Ramsay, its principal designer, said, “You’re solving problems that have never existed before, with parts that have never existed before.” The submarine is fitted with acoustic tracking and communications equipment, so that Vescovo can talk to the ship and the ship can triangulate his position in the water. Trunk pumps churn water into the empty chamber above the hatch. As water replaces air, the submarine descends to the ocean floor. Thrusters allow Vescovo to move in any direction as he explores the ocean floor. In designing the submarine, Ramsay took inspiration from rugby balls and bullet trains, which are the only two objects he could think of that have two axes of symmetry and can go equally fast in both directions. To leave the bottom, Vescovo drops a five-hundred-and-fifty-pound weight to the ocean floor. Hours later, as the submarine bobs at the surface, one-way valves allow water to pour out of the trunk, creating enough buoyancy for the pilot to exit the sub. It was the middle of summer, 2018, in South Florida, and Triton’s technicians were working fifteen hours a day, in a space with no air-conditioning. Lahey paced the workshop, sweating, trying to encourage his team. The men who were building the world’s most advanced deep-diving submersible had not attended Stanford or M.I.T.; they were former car mechanics, scuba instructors, and underwater welders, hired for their work ethic and their practical experience. The shop foreman used to be a truck driver. The hydraulics expert had a bullet in his abdomen, from his days running cocaine out of Fort Lauderdale, in the eighties. One of the electricians honed his craft by stealing car radios, as a teen-ager. (“I was really good at it,” he told me.) Lahey, for his part, said that he was named—and later exonerated—by the federal government as an unindicted co-conspirator in a narcotics-trafficking operation involving a Soviet military submarine and a Colombian cartel. Every major component of Vescovo’s submarine had to be developed from scratch. The oil-and-gas industry had established a supply chain of components that are pressure-rated to around six thousand metres—but that was only half the required depth. Before assembling the submarine, the Triton team spent months imploding parts in a pressure chamber, and sending feedback to the manufacturers. “You’re solving problems that have never existed before, with parts that have never existed before, from venders who don’t know how to make them,” Ramsay said. The rest of the expedition team was on a ship docked in the harbor at Vero Beach, waiting. Vescovo remained at home in Dallas, training on a simulator that Triton had rigged up in his garage. On Lahey’s recommendation, he had hired Rob McCallum, an expedition leader and a co-founder of EYOS Expeditions, to inject realism into a project that might otherwise die a dream. For every Vescovo who goes to the South Pole, there is a McCallum making sure he stays alive. (McCallum has been to Antarctica a hundred and twenty-eight times.) “I love it when clients come through the door and say, ‘I’ve been told this is impossible, but what do you think?’ ” he said to me. “Well, I think you’ve just given away your negotiating position. Let’s have a glass of wine and talk about it.” McCallum—who is trim but barrel-chested, with a soft voice and a Kiwi accent—grew up in the tropics of Papua New Guinea, and became a polar guide. He is a trained medic, dive master, firefighter, aircraft pilot, and boat operator, a former New Zealand park ranger who has served as an adviser to the Norwegian Navy. He speaks three Neo-Melanesian languages, and can pilot a Zodiac boat standing up, in sixteen-foot waves. He is the subject of a “Modern Love” column, in the Times. (“My father warned me about guys like you,” the author recalls telling him, before marrying him anyway.) McCallum and his associates have discovered several high-profile shipwrecks, including Australian and American warships and an Israeli military submarine. A few months ago, he showed me on his computer an object on a sonar scan, which he believes to be Amelia Earhart’s plane. Rob McCallum, the expedition leader. “I love it when clients come through the door and say, ‘I’ve been told this is impossible, but what do you think?’” he said. Vescovo asked what McCallum required from him. “The first thing I need is for you to triple the budget,” he replied. He also shot down several of Vescovo’s proposals, from the antiquated (no alcohol or spouses on board) to the insane (installing fake torpedo tubes on the bow; bringing his dog to the deepest point on earth). Five oceans, five deeps—a journey around the world and to both poles. McCallum explained that the expedition would have to be anchored by the polar dives. The likely dive spot in the Arctic Ocean is covered by ice for much of the year, but there is a two-week dive window, beginning in late August. The Antarctic, or Southern Ocean, dive could be done in February, the height of summer in that hemisphere. The team would have to avoid hurricane season in the Atlantic, and monsoon season in the Pacific, and otherwise remain flexible, for when things inevitably went wrong. Lahey persuaded Vescovo to buy the U.S.N.S. Indomitable, a two-hundred-and-twenty-foot vessel that he had found at a drydock in Seattle. It was built as an intelligence-gathering ship, in 1985, and spent much of the next fifteen years prowling the world’s oceans, towing an undersea listening device. “It was owned by the Navy but operated by civilians,” McCallum told me. The Arctic-dive window was fast approaching, and it seemed unlikely that the submersible would be ready. “That’s when Patrick Lahey’s overflowing optimism went from being an incredible, endearing personality trait to being a huge issue,” Stuart Buckle, the Pressure Drop’s captain, said. “Every day, Patrick would say, ‘Oh, yes, it’ll be ready in one or two days.’ And then two days pass, and he’d say, ‘It’ll be ready in two days.’ ” The final step in building a submarine is to put it in a swimming pool or in the water at a marina. “You need to know how much it weighs and how much it displaces,” Ramsay said, because the average density of the craft and its passengers must be equal to that of the water in which it is submerged. “You’ve only calculated the volume of each object through computer models, which can’t possibly represent the actual thing, with all its tolerances. Things are a bit bigger, things are a bit smaller, cables are fatter.” But there was no time to do this before loading it onto the ship and setting off for sea trials, in the Bahamas. They left Florida without knowing how much the submarine displaced. “It had never even touched the water,” Ramsay said. “It was just ‘Right, off we go. Let’s see if it works.’ ” When Stuart Buckle, the captain of the Pressure Drop, first walked up its gangplank, he wondered why Triton had chosen the ship. The hull was watertight, but there were holes in the steel superstructure, and every functional component had been stripped. “When people talk about sea trials, they always think about testing a ship or testing a sub,” McCallum told me. “But, really, what you’re doing is you’re testing people. You are testing systems, processes, conditions, and teams.” Buckle, the captain, dropped anchor near Great Abaco Island, in the Bahamas, and immediately became alarmed by the Triton crew’s cavalier approach to safety. He had grown up in the Scottish Highlands, and gone to sea when he was seventeen years old. “Me and my guys were trying to adjust from the oil-and-gas industry, where you need a signed bit of paper to do anything, and to go out on deck you have to have your overalls, hard hats, goggles, earmuffs, and gloves,” Buckle said. “Whereas a lot of the Triton guys were used to walking around in shorts and flip-flops, like you watch on ‘American Chopper.’ They were grinding and drilling and using hydraulic awls, looking at it, sparks flying everywhere, not wearing safety glasses or anything. To them, if something catches fire, it’s funny—it’s not an issue.” Vescovo named the submarine the Limiting Factor, for another spaceship from the “Culture” series. It was secured to a custom-built cradle, which could be rolled backward on metal tracks, to lower the sub into the ocean from the aft deck of the ship. During launch operations, the Triton crew attached it to a hook that hung down from a crane, known as an A-frame, shaped like an enormous hydraulic swing set. Buckle had asked Vescovo to buy a larger A-frame—one that was “man-rated” by a certification agency, so that they could launch the submersible, which weighs around twenty-six thousand pounds, with the pilot inside and the hatch secured. But there was no time to install one. So the Triton crew lowered the empty submersible into the water, and the ship’s crew, using a different crane, launched a Zodiac boat over the starboard side. McCallum climbed into the Zodiac, and drove the pilot to the sub as it was being towed behind the ship. The ship had no means of tracking the submarine underwater. “Once he left the surface, I had no idea where he was,” Buckle said. “All we had at that point was one range.” Buckle could see, for example, that the Limiting Factor was five hundred metres away, but he didn’t know in which direction. “As long as that number was getting bigger, that meant he wasn’t surfacing directly under me,” he said. “If it just kept getting smaller and smaller, I’m in trouble.” “The thing about driving a ship is that unless you know how to drive a ship you never see the bad stuff,” McCallum told me. “It’s only when the captain’s going ‘Christ, that was close!’ that you go ‘Really? Was it?’ ” Other incidents were unambiguous. “I was seeing Triton guys bouncing up the ladders without holding the handrails, wanting to jump on top of things while they were still swinging from the crane,” Buckle recalled. Ropes failed, deck equipment snapped under stress. “One of the big ratchet hooks blew off the top of the hangar, and missed Patrick’s head by that much,” McCallum said, holding his fingers a couple of inches apart. “Just missed him. And he wasn’t wearing a helmet, so that would have killed him.” Lahey piloted the sub on its earliest dives—first to twenty metres, then fifty, then a thousand. Electronic systems failed. The hatch leaked. Emergency lights malfunctioned, and drop weights got stuck. Pre-dive checklists labelled several switches “inoperable.” Post-dive checklists noted critical components lost and fallen to the seafloor.“In a sea trial, you’re trying to break stuff—you’re trying to work out where your weakest link is,” McCallum said. “It’s incredibly demoralizing. You never feel as if you’re making any meaningful forward progress.” Each morning, he delivered a pre-dive briefing to members of the ship and submarine crews. “Don’t be disheartened by the long list of things that broke,” he told them. “Rejoice, because those are things that are not going to fail in the Southern Ocean. ” On the sub’s earliest dives, electronic systems failed, the hatch leaked, and drop weights got stuck. On September 9, 2018, Patrick Lahey piloted the Limiting Factor to the bottom of the Abaco Canyon, more than three miles down. It was the ninth time that the submersible had been in the water. Everything worked. The next day, Lahey repeated the dive, with Vescovo as the lead pilot. When they reached the bottom, Vescovo turned on the control unit that directs the manipulator arm. Something wasn’t right. He and Lahey glanced at each other. “Do you smell that?” Lahey asked. “Yes.” There was a puff of smoke in the capsule. Vescovo and Lahey grabbed the “spare air”—scuba regulators, with two-minute compressed-air cannisters—so that they wouldn’t pass out while preparing the emergency breathing apparatus. A circuit breaker tripped, automatically switching off the control unit for the manipulator arm, and the acrid smell dissipated. Lahey, who was training Vescovo to handle crises underwater, asked what they should do. “Abort the dive?” Vescovo said. “Yes.” They were two hours from the surface. Ramsay and Tom Blades, Triton’s chief electrical designer, had devised numerous safety mechanisms. Most systems were duplicated, and ran on separate electrical circuits, in case one of the batteries failed. The thrusters could be ejected if they became entangled; so could the batteries, to drop weight and provide buoyancy. The five-hundred-and-fifty-pound surfacing weight was attached by an electromagnet, so that if the sub lost electricity it would immediately begin its ascent. There was also a dead-man switch: an alarm went off if the pilot failed to check in with the ship, and if he failed to acknowledge the alarm the weights would automatically drop. John Ramsay, the principal designer of the Limiting Factor, has never read a book about submarines. “You would just end up totally tainted in the way you think,” he said. After the Limiting Factor’s manipulator arm fell off, “Tom Blades hot-wired the sub,” Lahey said, about the submarine’s chief electrical designer. “There was literally a jumper cable running through the pressure hull.” “Whenever we had any significant failure of some kind, the only thing that mattered was why,” Vescovo said. “If you can identify the problem, and fix it, what are you going to do? Give up? Come on. That didn’t even cross my mind. Maybe other people get freaked out. I’ve heard of that happening. But if you’re mountain climbing and you fall, are you not going to climb again? No. You learn from it, and keep going.” By the middle of September, the sea trials had given way to “advanced sea trials”—a euphemism to cover for the fact that nothing was working. The Arctic Ocean dive window had already passed. Buckle was especially concerned about the launch-and-recovery system. The cranes were inadequate, and poorly spaced. One of the support vessels, which had been selected by Triton, was eighteen years old, and its rubber perimeter was cracking from years of neglect in the Florida sun. “I was pretty pissed off at that point,” Buckle told me. “I had put my guys in a difficult situation, because they were trying to compensate for structural issues that you couldn’t really work around. You can only piss with the dick you’ve been given.” McCallum redesigned the expedition schedule to begin with the Puerto Rico Trench, in the Atlantic Ocean, in December, followed by Antarctica, in early February. The adjustment added cost but bought time. When Alan Jamieson, the expedition’s chief scientist, contacted Heather Stewart, a marine geologist with the British Geological Survey, and told her that Vescovo wanted to dive to the deepest point of each ocean, she replied that there was a problem: nobody knew where those points were. Most maps showing the ocean floor in detail are commissioned by people looking to exploit it. The oil-and-gas and deep-sea-mining industries require extensive knowledge, and they pay for it. But, with a few exceptions, the characteristics of the deepest trenches are largely unknown. As recently as the nineteen-sixties, ocean depths were often estimated by throwing explosives over the side of a ship and measuring the time it took for the boom to echo back from the bottom. “Most marine science is gritty as fuck,” Alan Jamieson, the chief scientist, said. “It’s all the weird vessels we end up on, the work of hauling things in and out of the water.” It may appear as if the trenches are mapped—you can see them on Google Earth. But these images weren’t generated by scanning the bottom of the ocean; they come from satellites scanning the top. The surface of the ocean is not even—it is shaped by the features beneath it. Trenches create mild surface depressions, while underwater mountain ranges raise the surface. The result is a vaguely correct reading—here is a trench!—with a ludicrous margin of error. Every pixel is about five hundred metres wide, and what lies below may be thousands of feet deeper or shallower than the satellite projects, and miles away from where it appears on the map. Vescovo would have to buy a multibeam echo sounder, an advanced sonar mapping system, to determine precise depths and dive locations. He chose the Kongsberg EM-124, which would be housed in a massive gondola underneath the ship. No other system could so precisely map hadal depths. Vescovo’s purchase was the very first—serial number 001. When Jamieson contacted Heather Stewart, a marine geologist, and said that Vescovo wanted to dive to the deepest point of each ocean, she replied that there was a problem: nobody knew where those points were. That November, Buckle sailed the Pressure Drop to Curaçao, off the coast of Venezuela, to have the EM-124 and a new starboard crane installed. But there was still no time to order a man-rated A-frame—its purchase, delivery, and installation would require that they miss the Antarctic dive window, adding a year to the expedition. “He’s a wealthy dude, but he’s not like Paul Allen or Ray Dalio,” Buckle said of Vescovo. “He hasn’t got that kind of money. This is a huge commitment of his resources.” Stewart prepared a list of possible dive locations, which earned her a spot on the expedition. For others, participation was largely a matter of luck. Shane Eigler had started working at Triton the previous year, after Kelvin Magee, the shop foreman, sent him a Facebook message asking if he’d like to build submarines. They had met in the two-thousands, after Eigler had saved up enough money by growing marijuana to pay for dive lessons. Magee was his instructor. Later, Eigler worked as a car mechanic. “Building submarines—this shit is exactly the same as cars, just different components,” Eigler told me. On December 14th, the Pressure Drop set off for the Puerto Rico Trench, from the port of San Juan. “Been feeling a little queasy ever since we got underway,” Eigler wrote that night, in an e-mail to his wife. It was his first time at sea. In the beginning, the ship had no means of tracking the submarine underwater. “Once he left the surface, I had no idea where he was,” Buckle said. Vescovo and Lahey went for a test dive down to a thousand metres. It was Lahey’s last chance to train Vescovo in the Limiting Factor before he would attempt an eight-thousand-metre dive, solo, to the bottom of the Puerto Rico Trench. A scientific goal for the expedition was to collect a rock sample from the bottom of each trench, so Lahey switched on the manipulator arm. Seconds later, on the Pressure Drop, a transmission came up from below. “Control, this is L.F.,” Lahey said. “We have lost the arm. It has fallen off.” It was December 17th. After surfacing, Vescovo and Lahey walked into McCallum’s office, toward the stern of the ship. “Patrick was under immense pressure that would have crushed almost anybody else I know,” McCallum said. “He had applied a huge amount of his team’s intellectual capital to this project, at the expense of all other projects, and yet things were just not quite where they needed to be.” Vescovo called off the expedition. “I think I’m just going to write this whole thing off as bad debt,” he said. The manipulator arm had cost three hundred and fifty thousand dollars, and there was no spare. Lahey begged for more time. “Give my guys one more day,” he said. Vescovo relented, and went up to his cabin. No one saw him for the next thirty-two hours. “The more time I spend with Victor, the more I think he is Vulcan in his decision-making but not in his emotions,” Buckle told me. “He’s one of those guys who has a veneer of calm, but then probably goes into his cabin and screams into his pillow after he’s been told the fifth bit of bad news that day.” (Vescovo denies screaming into his pillow.) Blades noted that the loss of the manipulator arm had freed up an electrical junction box, creating an opportunity to fix nearly everything else that was wrong with the electronics. “Basically, Tom Blades hot-wired the sub,” Lahey explained. “There was literally a jumper cable running through the pressure hull, tucked behind Victor’s seat.” On December 19th, Vescovo climbed into the Limiting Factor and began his descent. “The control room was just packed, and you could cut the atmosphere with a knife the entire way down,” Stewart told me. “Patrick was just in his chair, ear to the radio, just wringing sweat.” At 2:55 P.M., Victor Vescovo became the first person to reach the deepest point in the Atlantic Ocean, eight thousand three hundred and seventy-six metres. It was his first solo dive, and it was flawless. That night, “Victor was wandering around, drinking out of a bottle of champagne,” McCallum said. “It was the first time we’d seen Victor relax. It was the first time we’d seen Victor touch alcohol. And from that point we knew we were going to take this around the world.” Waves are local—the brushing of the ocean by the wind. Swells roll for thousands of miles across open water, unaffected by the weather of the moment. On January 24, 2019, the Pressure Drop set off from the port of Montevideo, Uruguay, to dive the South Sandwich Trench, the deepest point of the Southern Ocean. Buckle and his crew had loaded the ship with cold-weather gear, and provisions for more than a month. There was a five-thousand-mile journey ahead of them, and the ship could barely go nine knots. “Captain, can I have a word?” Peter Coope, the chief engineer, asked. “Is this ship going to be O.K.?” “Yes,” Buckle replied. “Do you think I would invite on board all the people I like working with most in the world, and then sail us all to a certain death?” But Buckle wasn’t so sure. A year earlier, when he’d first walked up the gangplank, he wondered why Triton had chosen this ship. The Pressure Drop hadn’t been in service in several years. The hull was watertight, but there were holes in the steel superstructure, and the shipyard had stripped every functional component. The steering system had been wired in reverse; turn one way and the ship went the other. “It’s a classic case of people who have spent a lot of time on boats thinking they know boats,” Buckle told me. “I’ve spent a lot of time on planes, but if Victor said, ‘I want to buy a 747,’ I wouldn’t go up and say, ‘Yes, that one is great—buy that one.’ I’d get a pilot or a flight engineer to do it.” Buckle’s first officer recalled, “The ship was fucking breaking apart.” After the purchase, Buckle and a small crew of mostly Scottish sailors spent two months living near a dock yard in Louisiana, refitting and repairing the ship. “Stu took a huge risk—not only for himself but for all his officers,” McCallum told me. “He handpicked the guys, pulled them off of very well-paying oil-and-gas jobs, and got them to follow him to bumfuck nowhere.” In the evenings, Buckle and his crew drank beer on the top deck, and tossed pizza slices to alligators in the bayou. The ship came with no manuals, no electrical charts. “It was just a soul-destroying, slow process,” Buckle said. Now Buckle was steering the Pressure Drop into the Southern Ocean, the site of the most reliably violent seas in the world. After a few nights, Erlend Currie, a sailor from the Orkney Islands, shoved a life jacket under the far side of his bunk, so that the mattress would form a U shape, and he wouldn’t fall out. “You get these nasty systems rolling through, with just little gaps between them,” McCallum told me. McCallum has seen waves in the Southern Ocean crest above ninety feet. He had carefully mapped out a dive window, between gales, and brought on board an ice pilot and a doctor. “If something goes wrong, there’s no port to go to, and there’s no one to rescue you,” he said. Albatross trailed the ship for the first several days. Soon they disappeared and the crew began seeing whales and penguins. “Filled with trepidation, we steamed into the teeth of the area where, on the old maps, they used to write, ‘Here Be Monsters,’ ” Vescovo told me. Cassie Bongiovanni and her sonar assistants ended up mapping an area of the ocean floor about the size of Texas, most of which had never been surveyed. On the forecastle deck, in the control room, a cheerful, brown-haired Texan named Cassie Bongiovanni sat before four large monitors, which had been bolted to the table. Bongiovanni, who is twenty-seven years old, was finishing a master’s degree in ocean mapping at the University of New Hampshire when Rob McCallum called and said that he needed someone to run a multibeam sonar system for one and a half laps around the world. She graduated at sea while mapping Vescovo’s dive location in the Puerto Rico Trench. As the head sonar operator, Bongiovanni had to make perfect decisions based on imperfect information. “The sound is generated from the EM-124, housed inside the giant gondola under the ship,” she said. “As it goes down, the width of each sound beam grows, so that in the deepest trenches we’re only able to pick up one point every seventy-five metres or so.” In these trenches, it takes at least seven seconds for sound to reach the bottom, and another seven seconds to return. In that gap, the ship has moved forward, and has pitched and rolled atop the surface of the sea. Bongiovanni also had to account for readings of sound speed at each dive site, as it is affected by variations in temperature, salinity, and depth. The purchase and installation of the EM-124 cost more than the ship itself, but its software was full of bugs. Each day, Bongiovanni oscillated between awe and frustration as she rebooted it, adjusted parameters, cleaned up noisy data, and sent e-mails to Kongsberg, the maker, to request software patches. The expedition wasn’t merely the first to dive the South Sandwich Trench but the first to map it as well. Steve Chappell, a Triton mechanic, was one of a few crew members assigned the role of “swimmer,” leaping into the water and disconnecting the towline from the Limiting Factor before it descended. Buckle positioned the ship over the dive site. A Triton mechanic named Steve Chappell was assigned the role of “swimmer,” meaning that he would balance atop the Limiting Factor as it was lowered into the water, and disconnect the towline before it went down. He wore a dry suit; polar waters can rapidly induce involuntary gasping and vertigo, and even talented swimmers can drown within two minutes. For a moment, he lay on a submarine bucking in the middle of the Southern Ocean, fumbling with wet ropes, fingers numb. Then a Zodiac picked him up and took him back to the Pressure Drop, where he warmed his hands by an exhaust vent. Vescovo started the pumps, and the Limiting Factor began its descent. Dive protocols required that Vescovo check in with the surface every fifteen minutes and announce his depth and heading and the status of his life-support system. But, after forty-five hundred metres, the communications system failed. The ship could still receive Vescovo’s transmissions, but Vescovo couldn’t hear the replies. Aphids and krill drifted past the viewports. It is customary to abort a dive thirty minutes after losing communications, but Vescovo knew that he might never have another chance to reach the bottom of the Southern Ocean, so he kept going. He liked the sensation of being truly alone. Sometimes, on the surface, he spoke of human nature as if it were something he had studied from the outside. Another hour passed before he reached the deepest point: seven thousand four hundred and thirty-three metres. The point had never been measured or named. He decided to call it the Factorian Deep. That night, Alan Jamieson, the chief scientist, stood on the aft deck, waiting for biological samples to reach the surface. “Most marine science is gritty as fuck,” he told me. “It’s not just ‘Look at the beautiful animal,’ or ‘Look at the mysteries of the deep.’ It’s all the weird vessels we end up on, the work of hauling things in and out of the water.” Jamieson, a gruff, forty-two-year-old marine biologist, who grew up in the Scottish Lowlands, is a pioneer in the construction and use of hadal landers—large, unmanned contraptions with baited traps and cameras, dropped over the side of a ship. In the past two decades, he has carried out hundreds of lander deployments in the world’s deep spots, and found evidence of fish and critters where none were thought to be. Now, as snow blew sideways in the darkness and the wind, he threw a grappling hook over the South Sandwich Trench and caught a lander thrashing in the waves. There were five landers on board. Three were equipped with advanced tracking and communications gear, to lend navigational support to the sub underwater. The two others were Jamieson’s—built with an aluminum frame, disposable weights, and a sapphire window for the camera, to withstand the pressure at depth. Before each dive, he tied a dead mackerel to a metal bar in front of the camera, to draw in hungry hadal fauna. Now, as he studied the footage, he discovered four new species of fish. Amphipods scuttled across the featureless sediment on the seafloor, and devoured the mackerel down to its bones. They are ancient, insect-like scavengers, whose bodies accommodate the water—floating organs in a waxy exoskeleton. Their cells have adapted to cope with high pressure, and “they’ve got this ridiculously stretchy gut, so they can eat about three times their body size,” Jamieson explained. Marine biologists classify creatures in the hadal zone as “extremophiles.” The following night, one of Jamieson’s landers was lost. “Usually, things come back up where you put them, but it just didn’t,” Buckle said. “We worked out what the drift was, and we then sailed in that drift direction for another three or four hours, with all my guys on the bridge—searchlights, binoculars, everyone looking for it. And we just never found it.” On the Arctic and Antarctic dives, the swimmers wore dry suits; polar waters can induce gasping and vertigo, and even talented swimmers risk drowning within two minutes. The second one surfaced later that night. But during the recovery it was sucked under the pitching ship and went straight through the propeller. By now, there was a blizzard, and the ship was heaving in eighteen-foot waves. “I lost everything—just fucking everything—in one night,” Jamieson said. Vescovo suggested naming the site of the lost landers the Bitter Deep. The Pressure Drop set off east, past a thirty-mile-long iceberg, for Cape Town, South Africa, to stop for fuel and food. Bongiovanni left the sonar running, collecting data that would correct the depths and the locations of key geological features, whose prior measurements by satellites were off by as much as several miles. (Vescovo is making all of the ship’s data available to Seabed2030, a collaborative project to map the world’s oceans in the next ten years.) Meanwhile, Jamieson cobbled together a new lander out of aluminum scraps, spare electronics, and some ropes and buoys, and taught Erlend Currie, the sailor from the Orkney Islands, to bait it and set the release timer. Jamieson named the lander the Erlander, then he disembarked and set off for England, to spend time with his wife and children. It would take several weeks for the ship to reach its next port stop, in Perth, where the Triton crew would install a new manipulator arm. At the time, the deepest point in the Indian Ocean was unknown. Most scientists believed that it was in the Java Trench, near Indonesia. But nobody had ever mapped the northern part of the Diamantina Fracture Zone, off the coast of Australia, and readings from satellites placed it within Java’s margin of error. The Pressure Drop spent three days over the Diamantina; Bongiovanni confirmed that it was, in fact, shallower than Java, and Currie dropped the Erlander as Jamieson had instructed. When it surfaced, around ten hours later—the trap filled with amphipods, including several new species—Currie became the first person to collect a biological sample from the Diamantina Fracture Zone. The Java Trench lies in international waters, which begin twelve nautical miles from land. But the expedition’s prospective dive sites fell within Indonesia’s Exclusive Economic Zone; according to U.N. conventions, a country has special rights to the exploration and exploitation of marine resources, as far as two hundred nautical miles from the coast. McCallum had spent much of the previous year applying for permits and permissions; he dealt with fifty-seven government agencies, from more than a dozen countries, in order to plan the Five Deeps. For several months, the Indonesian government ignored McCallum’s inquiries. Then he was bounced among ten or more agencies, to which he sent briefing materials about the submersible, the ship, the crew, and the mission. Between the Atlantic and the Antarctic dives, Vescovo flew to Jakarta to deliver a lecture, and he offered to bring an Indonesian scientist to the bottom of the trench. But when the ship arrived in Bali McCallum still hadn’t received permission to dive. Officially, this meant that the team could not carry out any scientific work in the Java Trench. But the international law of the sea allows for the testing of equipment, and, after Java, the next set of dives, in the Pacific Ocean, would be the deepest of all. “So we tested the sub a few times,” McCallum said, smiling. “We tested the landers, we tested the sonar—we tested everything.” The Java Trench is more than two thousand miles long, and the site of violent seismic activity. Surveys in the northern part show evidence of landslides, from the 2004 earthquake that triggered a tsunami with hundred-foot waves that killed a quarter of a million people across Southeast Asia. Farther south, satellites had detected two deep pools, several hundred miles apart. The Pressure Drop mapped both sites, and Bongiovanni discovered that, in fact, the deepest point was between them, in a small pool that had previously gone unnoticed. It may be a new rupture in the ocean floor. Buckle positioned the Pressure Drop over the pool, and turned off the ship’s tracking and communications equipment. McCallum hoisted a pirate flag. The climate was tropical, eighty-six degrees, the ocean calm, with slow, rolling swells and hardly a ripple on the surface. On the morning of April 5, 2019, the Triton crew launched the Limiting Factor without incident, and Vescovo dived to the deepest point in the Java Trench. Mountaineers stand atop craggy peaks and look out on the world. Vescovo descended into blackness, and saw mostly sediment at the bottom. The lights on the Limiting Factor illuminated only a few feet forward; the acrylic viewports are convex and eight inches thick. Whatever the true topography of the rock underneath, hadal trenches appear soft and flat at the deep spots. Flip a mountain upside down and, with time, the inverted summit will be unreachable; for as long as there has been an ocean, the trenches have been the end points of falling particulate—volcanic dust, sand, pebbles, meteorites, and “the billions upon billions of tiny shells and skeletons, the limy or silicious remains of all the minute creatures that once lived in the upper waters,” Rachel Carson wrote, in “The Sea Around Us,” in 1951. “The sediments are a sort of epic poem of the earth.” Vescovo spent three hours at the bottom, and saw a plastic bag through the viewports. In the Puerto Rico Trench, one of the Limiting Factor’s cameras had captured an image of a soda can. Scientists estimate that in thirty years the oceans will hold a greater mass of plastic than of fish. Almost every biological sample that Jamieson has dredged up from the hadal zone and tested in a lab has been contaminated with microplastics. “Does it harm the ability of these animals to feed, to maneuver, to reproduce?” McCallum said. “We don’t know, because we can’t compare one that’s full of microplastics with one that’s not. Because there aren’t any.” The walls of trenches are filled with life, but they were not Vescovo’s mission. “It’s a little bit like going to the Louvre, putting your running shoes on, and sprinting through it,” Lahey said. “What you really want to do is to go there with someone who can tell you what you’re looking at.” The next day, Vescovo told Lahey that he could take Jamieson to the bottom of the trench. “I don’t want to go to the deepest point, because that’s boring,” Jamieson said. “Let’s go somewhere really cool.” After a series of failures, Vescovo came close to calling off the expedition. “I think I’m just going to write this whole thing off as bad debt,” he said. Four and a half miles below the ship, the Australia tectonic plate was being slowly and violently subsumed by the Eurasia plate. Bongiovanni had noticed a staircase feature coming out of a fault line, the result of pressure and breakage on a geological scale. It extended more than eight hundred feet up, beyond vertical, with an overhang—an outrageously difficult dive. Lahey would have to back up as they ascended, with no clear view of what was above the sub. The hatch started leaking during the descent, but Lahey told Jamieson to ignore it—it would seal with pressure. It kept dripping for more than ninety minutes, and stopped only at fifteen thousand feet. The Limiting Factor arrived at the bottom just after noon. Lahey approached the fault-line wall, and headed toward some bulging black masses. From a distance, they looked to Jamieson like volcanic rock, but as Lahey drew closer more colors came into view—brilliant reds, oranges, yellows, and blues, cloaked in hadal darkness. Without the lights of the submarine, the colors may never have been seen, not even by creatures living among them. These were bacterial mats, deriving their energy from chemicals emanating from the planet’s crust instead of from sunlight. It was through this process of chemosynthesis that, billions of years ago, when the earth was “one giant, fucked-up, steaming geological mass, being bombarded with meteorites,” as Jamieson put it, the first complex cell crossed some intangible line that separates the non-living from the living. Lahey began climbing the wall—up on the thrusters, then backward. Jamieson discovered a new species of snailfish, a long, gelatinous creature with soft fins, by looking through a viewport. The pressure eliminates the possibility of a swim bladder; the lack of food precludes the ossification of bones. Some snailfish have antifreeze proteins, to keep them running in the cold. “Biology is just smelly engineering,” Jamieson said. “When you reverse-engineer a fish from the most extreme environments, and compare it to its shallow-water counterparts, you can see the trade-offs it has made.” The wall climb took an hour. When the last lander surfaced, Jamieson detached the camera and found that it had captured footage of a dumbo octopus at twenty-three thousand feet—the deepest ever recorded, by more than a mile. The Pressure Drop set off toward the Pacific Ocean. McCallum lowered the pirate flag. Seven weeks later, Jamieson received a letter from the Indonesian government, saying that his research-permit application had been rejected, “due to national security consideration.” By the end of the expedition, the ship and submarine crews had so perfected the launch and recovery that, even in rough seas, to an outsider it was like watching an industrial ballet. Buckle sailed to Guam, with diversions for Bongiovanni to map the Yap and Palau Trenches. Several new passengers boarded, one of whom was unlike the rest: he had been where they were going, six decades before. Hadal exploration has historically prioritized superlatives, and an area of the Mariana Trench, known as the Challenger Deep, contains the deepest water on earth. On January 23, 1960, two men climbed into a large pressure sphere, which was suspended below a forty-thousand-gallon tank of gasoline, for buoyancy. One of them was a Swiss hydronaut named Jacques Piccard, whose father, the hot-air balloonist Auguste Piccard, had designed it. The other was Don Walsh, a young lieutenant in the U.S. Navy, which had bought the vehicle, known as a bathyscaphe, and modified it to attempt a dive in the Challenger Deep. The bathyscaphe was so large that it had to be towed behind a ship, and its buoyant gasoline tank was so delicate that the ship couldn’t travel more than one or two miles per hour. To find the dive site, sailors tossed TNT over the side of the ship, and timed the echo reverberating up from the bottom of the trench. There was one viewport, the size of a coin. When the bathyscaphe hit the bottom, stirring up sediment, “it was like looking into a bowl of milk,” Walsh said. A half century passed before anyone returned. The bathyscaphe never again dived to hadal depths. Jacques Piccard died in 2008. Now Don Walsh, who was eighty-eight, walked up the gangway of the Pressure Drop. It was a short transit to the Mariana Trench, across warm Pacific waters, over six-foot swells. Above the Challenger Deep, Vescovo pulled on a fire-retardant jumpsuit, and walked out to the aft deck. A gentle wind blew in from the east. Walsh shook Vescovo’s hand. Vescovo climbed into the Limiting Factor, carrying an ice axe that he had brought to the summit of Mt. Everest. Hatch secured, lift line down, tag lines released, towline out—pumps on. Vescovo wondered, Is the sub able to handle this? He didn’t think it would implode, but would the electronics survive? The thrusters? The batteries? Besides Walsh and Piccard, the only other person to go to the bottom of the Challenger Deep was the filmmaker James Cameron, in 2012. Multiple systems failed at the bottom, and his submersible never dove deep again. The depth gauge ticked past ten thousand nine hundred metres, thirty-six thousand feet. After four hours, Vescovo started dropping variable ballast weights, to slow his descent. At 12:37 P.M., he called up to the surface. His message took seven seconds to reach the Pressure Drop: “At bottom.” Outside the viewports, Vescovo saw amphipods and sea cucumbers. But he was two miles beyond the limits of fish. “At a certain point, the conditions are so intense that evolution runs out of options—there’s not a lot of wiggle room,” Jamieson said. “So a lot of the creatures down there start to look the same.” Vescovo switched off the lights and turned off the thrusters. He hovered in silence, a foot off the sediment bottom, drifting gently on a current, nearly thirty-six thousand feet below the surface. That evening, on the Pressure Drop, Don Walsh shook his hand again. Vescovo noted that, according to the sonar scan, the submarine data, and the readings from the landers, he had gone deeper than anyone before. “Yeah, I cried myself to sleep last night,” Walsh joked. The Triton team took two maintenance days, to make sure they didn’t miss anything. But the Limiting Factor was fine. So Vescovo went down again to retrieve a rock sample. He found some specimens by the northern wall of the trench, but they were too big to carry, so he tried to break off a piece by smashing them with the manipulator arm—to no avail. “I finally resorted to just burrowing the claw into the muck, and just blindly grabbing and seeing if anything came out,” he said. No luck. He surfaced. Hours later, Vescovo walked into the control room and learned that one of the navigation landers was stuck in the silt. He was in despair. The lander’s batteries would soon drain, killing all communications and tracking—another expensive item lost on the ocean floor. “Well, you do have a full-ocean-depth submersible” available to retrieve it, McCallum said. Lahey had been planning to make a descent with Jonathan Struwe, of the marine classification firm DNV-GL, to certify the Limiting Factor. Now it became a rescue mission. When Lahey reached the bottom, he began moving in a triangular search pattern. Soon he spotted a faint light from the lander. He nudged it with the manipulator arm, freeing it from the mud. It shot up to the surface. Struwe—who was now one of only six people who had been to the bottom of the Challenger Deep—certified the Limiting Factor’s “maximum permissible diving depth” as “unlimited.” The control room was mostly empty. “When Victor first went down, everyone was there, high-fiving and whooping and hollering,” Buckle said. “And the next day, around lunchtime, everyone went ‘Fuck this, I’ll go for lunch.’ Patrick retrieves a piece of equipment from the deepest point on earth, and it’s just me, going, ‘Yay, congratulations, Patrick.’ No one seemed to notice how big a deal it is that they had already made this normal—even though it’s not. It’s the equivalent of having a daily flight to the moon.” McCallum, in his pre-dive briefings, started listing “complacency” as a hazard. The crew quickly became accustomed to the expedition’s achievements. “No one seemed to notice how big a deal it is that they had already made this normal—even though it’s not,” Buckle said. “It’s the equivalent of having a daily flight to the moon.”  Vescovo was elated when the lander reached the surface. “Do you know what this means?” McCallum said to him.“Yeah, we got the three-hundred-thousand-dollar lander back,” Vescovo said. “Victor, you have the only vehicle in the world that can get to the bottom of any ocean, anytime, anywhere,” McCallum said. The message sank in. Vescovo had read that the Chinese government has dropped acoustic surveillance devices in and around the Mariana Trench, apparently to spy on U.S. submarines leaving the naval base in Guam; he could damage them. A Soviet nuclear submarine sank in the nineteen-eighties, near the Norwegian coast. Russian and Norwegian scientists have sampled the water inside, and have found that it is highly contaminated. Now Vescovo began to worry that, before long, non-state actors might be able to retrieve and repurpose radioactive materials lying on the seafloor. “I don’t want to be a Bond villain,” Vescovo told me. But he noted how easy it would be. “You could go around the world with this sub, and put devices on the bottom that are acoustically triggered to cut cables,” he said. “And you short all the stock markets and buy gold, all at the same time. Theoretically, that is possible. Theoretically.” After a maintenance day, Lahey offered to take John Ramsay to the bottom of the trench. Ramsay was conflicted, but, he said, “there was this sentiment on board that if the designer doesn’t dare get in it then nobody should dare get in it.” He climbed in, and felt uncomfortable the entire way down. “It wasn’t that I actually needed to have a shit, it was this irrational fear of what happens if I do need to have a shit,” he said. Two days later, Vescovo took Jamieson to the bottom of the Mariana Trench. They returned with one of the deepest rock samples ever collected, after Vescovo crashed into a boulder and a fragment landed in a battery tray. Buckle started sailing back to Guam, to drop off Walsh, Vescovo, and the Triton crew. “It’s quite mind-blowing, when you sit down and think about it, that, from the dawn of time until this Monday, there were three people who have been down there,” he said. “Then, in the last ten days, we’ve put five more people down there, and it’s not even a big deal.” The Pressure Drop, anchored in the Svalbard archipelago. The least-known region of the seafloor lies under the Arctic Ocean. It was early May, and there was only one ocean left. But the deepest point in the Arctic Ocean was covered by the polar ice cap, and would remain so for several months. The Pressure Drop headed south, toward Tonga, in the South Pacific. Bongiovanni kept the sonar running twenty-four hours a day, and Jamieson carried out the first-ever lander deployments in the San Cristobal and Santa Cruz Trenches. “The amphipod samples are mostly for genetic work, tracking adaptations,” he told me. The same critters were showing up in trenches thousands of miles apart—but aren’t found in shallower waters, elsewhere on the ocean floor. “How the fuck are they going from one to another?” Bongiovanni mapped the Tonga Trench. The sonar image showed a forty-mile line of fault escarpments, a geological feature resulting from the fracturing of an oceanic plate. “It’s horrendously violent, but it’s happening over geological time,” Jamieson explained. “As one of the plates is being pushed down, it’s cracking into these ridges, and these ridges are fucking huge”—a mile and a half, vertical. “If they were on land, they’d be one of the wonders of the world. But, because they’re buried under ten thousand metres of water, they just look like ripples in the ocean floor.” Bongiovanni routinely stayed up all night, debugging the new software and surveying dive sites, so that the Limiting Factor could be launched at dawn. “Day Forever,” she dated one of her journal entries. “Sonar fucked itself.” Now, before taking leave, she taught Erlend Currie, who had launched Jamieson’s makeshift lander in the Diamantina Fracture Zone, how to operate the EM-124. “When you give people more responsibility, they either crumble or they bloom, and he blooms,” Buckle said. In the next month, Currie mapped some six thousand nautical miles of the ocean floor, from the Tonga Trench to the Panama Canal. “Erlend’s doing a good job,” another officer reported to Bongiovanni. “He’s starting to really talk like a mapper. He just hasn’t quite learned how to drink like one.” I boarded the Pressure Drop in Bermuda, in the middle of July, seven months into the expedition. The crew had just completed another set of dives in the Puerto Rico Trench, to demonstrate the equipment to representatives of the U.S. Navy and to the billionaire and ocean conservationist Ray Dalio. (Dalio owns two Triton submarines.) Vescovo hoped to sell the hadal exploration system for forty-eight million dollars—slightly more than the total cost of the expedition. During one of the demonstrations, a guest engineer began outlining all the ways he would have done it differently. “O.K.,” McCallum said, smiling. “But you didn’t.” We set off north, through the turquoise waters of the Gulf Stream. It would take roughly three weeks, without stopping, to reach the deepest point in the Arctic Ocean. But the Arctic dive window wouldn’t open for five more weeks, and, as Vescovo put it, “the Titanic is on the way.” For several nights, I stood on the bow, leaning over the edge, mesmerized, as bioluminescent plankton flashed green upon contact with the ship. Above that, blackness, until the horizon, where the millions of stars began. Sometimes there was a crack of lightning in the distance, breaking through dark clouds. But most nights the shape of the Milky Way was so pronounced that in the course of the night you could trace the earth’s rotation. The air turned foggy and cold. Buckle steered out of the Gulf Stream and into the waters of the North Atlantic, a few hundred miles southeast of the port of St. John’s, Newfoundland. After midnight, everyone gathered on the top deck and downed a shot of whiskey—a toast to the dead. We would reach the site of the Titanic by dawn. At sunrise, we tossed a wreath overboard, and watched it sink. A few years ago, Peter Coope, Buckle’s chief engineer, was working on a commercial vessel that was affixing an enormous, deepwater anchor to an oil rig off the coast of Indonesia. The chain slipped over the side, dragging down one side of the ship so far that the starboard propeller was in the air. Water poured into the engine room, where Coope worked. It was impossible for him to reach the exit. British ship engineers wear purple stripes on their epaulets. Many of them think of this as a tribute to the engineers on the Titanic, every one of whom stayed in the engine room and went down with the ship. Now Coope, whose father was also a chief engineer, resolved to do the same. “I saw my life blowing away,” Coope recalled. “People say it flashes in front of you. I was just calm. I felt, That’s it—I’ve gone.” The bridge crew managed to right the ship after he had already accepted his fate. The next day, Vescovo piloted the Limiting Factor down to the Titanic, with Coope’s epaulets, and those of his father, in the passenger seat. The debris field spans more than half a mile, and is filled with entanglement hazards—loose cables, an overhanging crow’s nest, corroded structures primed to collapse. (“What a rusting heap of shit!” Lahey said. “I don’t want the sub anywhere near that fucking thing!”) Large rusticles flow out from the bow, showing the directions of undersea currents. Intact cabins have been taken over by corals, anemones, and fish. That evening, Vescovo returned the epaulets, along with a photograph of him holding them at the site of the wreck. Coope, who is sixty-seven, had come out of retirement to join this expedition—his last. The Pressure Drop continued northeast, past Greenland and Iceland, to a port in Svalbard, an Arctic archipelago about six hundred miles north of Norway. Huge glaciers fill the inlets, and where they have melted they have left behind flattop mountains and slopes, crushed and planed by the weight of the ice. Most of the archipelago is inaccessible, except by snowmobile or boat. The population of polar bears outnumbers that of people, and no one leaves town without a gun. McCallum brought on board two EYOS colleagues, including a polar guide who could smell and identify the direction of a walrus from a moving ship, several miles away. By now, McCallum had adjusted the expedition schedule ninety-seven times. The Pressure Drop set off northwest, in the direction of the Molloy Hole, the site of the deepest point in the Arctic Ocean. The least-known region of the seafloor lies under the polar ice cap. But scientists have found the fossilized remains of tropical plants; in some past age, the climate was like that of Florida. It was the height of Arctic summer, and bitterly cold. I stood on the bow, watching Arctic terns and fulmars play in the ship’s draft, and puffins flutter spastically, barely smacking themselves out of the water. The sun would not set, to disorienting effect. When I met John Ramsay, he explained, with some urgency, that the wider, flatter coffee cups contained a greater volumetric space than the taller, skinnier ones—and that this was an important consideration in weighing the consumption of caffeine against the potential social costs of pouring a second cup from the galley’s single French press. Ice drifted past; orcas and blue whales, too. Buckle sounded the horn as the ship crossed the eightieth parallel. One night, the horizon turned white, and the polar ice cap slowly came into view. Another night, the ice pilot parked the bow of the ship on an ice floe. The Pressure Drop had completed one and a half laps around the world, to both poles. The bow thruster filled the Arctic silence with a haunting, mechanical groan. Bongiovanni and her sonar assistants had mapped almost seven hundred thousand square kilometres of the ocean floor, an area about the size of Texas, most of which had never been surveyed. Jamieson had carried out a hundred and three lander deployments, in every major hadal ecosystem. The landers had travelled a combined distance of almost eight hundred miles, vertically, and captured footage of around forty new species. Once, as we were drinking outside, I noticed a stray amphipod dangling from Jamieson’s shoelace. “These little guys are all over the fucking planet,” he said, kicking it off. “Shallower species don’t have that kind of footprint. You’re not going to see that with a zebra or a giraffe.” The earth is not a perfect sphere; it is smushed in at the poles. For this reason, Vescovo’s journey to the bottom of the Molloy Hole would bring him nine miles closer to the earth’s core than his dives in the Mariana Trench, even though the Molloy is only half the depth from the surface. On August 29th, Vescovo put on his coveralls and walked out to the aft deck. The ship and submarine crews had so perfected the system of launch and recovery that, even in rough seas, to an outsider it was like watching an industrial ballet. The equipment had not changed since the expedition’s calamitous beginnings—but the people had. “This is not the end,” Vescovo said, quoting Winston Churchill. “It is not even the beginning of the end. But it is, perhaps, the end of the beginning.” He climbed inside the Limiting Factor. The swimmer closed the hatch. Vescovo turned on the oxygen and the carbon-dioxide scrubbers. “Life support engaged,” he said. “Good to go.” For the first few hundred feet, he saw jellyfish and krill. Then marine snow. Then nothing.


Worst Russian Submarine Disasters of All Time

While some of the accidents could be blamed on the lax safety features of Cold War-era Soviet submarines, since 2000 the Russian Navy has also seen several submarine disasters, including some in port. Last year 14 Russian sailors were killed when a fire broke out on a secret Russian submarine. The boat was identified as Losharik (AS-12), a nuclear-powered submarine that is widely believed to be a key asset for the Russian Main Directorate of Deep-Sea Research, also known as GUGI. “On July 1, 14 submariners—sailors—died in Russian territorial waters as a result of inhaling combustion products aboard a research submersible vehicle designated for studying the seafloor and the bottom of the World Ocean in the interests of the Russian Navy after a fire broke out during bathymetric measurements,” read a translation of the statement from the state-controlled TASS news service. There is no denying that it takes a special type of sailor to volunteer to serve aboard a submarine. You literally live underwater in a steel tube for weeks—sometimes months—on end. You need to get used to foul air, a lack of sunlight and very tight quarters; and then there is the fact that the steel tube could all too easily become a watery metal tomb! Since the American Civil War, when the Confederate Navy launched the first successful military submarine, the CSN Hunley, submariners have known the risk. Even using the word “successful” in the same sentence with the Hunley is questionable as it succeeded in its attack, but 21 crewmen were lost in three sinkings of the boat. Many more submarine crews would face a similar fate. The Soviet and later Russian Navy have unfortunately seen more than their fair share of modern submarine disasters. So much so that a line at the end of the film The Hunt for Red October, based on the book of the same name seems almost ominous when the American National Security Advisor questions his Soviet counterpart, “you mean you lost another submarine.” Sadly, the Soviet Navy did lose a number of submarines during the Cold War. Among these was S-80, a diesel-electric submarine that sank in an accident in the Barents Sea. It dropped below its snorkel depth and because its de-icing system was off the vessel, it quickly flooded and sank to the sea floor with 68 crew members. In January 1962, the Soviet B-37 exploded after a fire broke out in its torpedo compartment while it was docked at the Northern Fleet’s base in the city of Polyarny. The explosion killed 122 sailors including those from the B-37, but also the S-350 submarine tied up next to it, which was badly damaged as well. Several men from other ships and the shipyard were among those who lost their lives due to the horrible accident. The diesel-powered submarine K-129, part of the Soviet’s Pacific Fleet, was lost approximately 2,890 kilometers northwest of Hawaii after it was believed to have slipped below its operating depth, which resulted in flooding. Other theories suggest it suffered a hydrogen battery explosion or collided with the USS Swordfish, but whatever the cause, its wreck has never been found—while reports suggest the U.S. Navy may have recovered parts of the submarine. On April 12, 1970 the K-8, a Project 627A Kit­-class (NATO: November) nuclear-powered submarine sank after a fire broke out in its engine room. It was actually the second fire, as a first one resulted in the crew abandoning ship. After a rescue vessel arrived the crew attempted to regain control of the submarine, which sank in heavy seas due to the second fire while the boat was being towed—killing 52 sailors. A total of 42 out of 69 crew members were killed aboard the K-278 Komsomolet, which was one of the highest performance submarines ever built. It had an operating depth greater than 3,000 feet, but sank on April 7, 1989 after a fire broke out on board. While only four died of a direct result of the fire, the rest were killed from exposure and more would have been saved if the Soviet Navy had mounted a rescue operation sooner. While some of the accidents could be blamed on the lax safety features of Cold War-era Soviet submarines, since 2000 the Russian Navy has also seen several submarine disasters, including some in port. Among the first was also one of the worst, when in August 2000 the nuclear-powered Kursk sank in the Barents Sea due to an explosion in its torpedo room, which killed all 118 of its crew. The Kursk’s wreckage was recovered and the accident was ultimately traced to the Type-65-76A torpedo. Though the weapon is powerful enough to destroy an aircraft carrier with a single hit, the Soviet Union inexplicably designed the torpedo to run on hydrogen peroxide fuel, which is highly volatile and requires careful handling. The crew had not been adequately trained to handle those weapons. Nine crew members were killed in August 2003 on the K-159, a nuclear-powered submarine that sank in the Barents Sea during a storm, while it was being towed to a harbor to have its nuclear reactors stripped when the storm broke out. Three years later a fire aboard another nuclear-powered submarine Daniil Moskovskiy broke out in the mechanics room and killed two sailors. The deadliest submarine disaster since the Kursk occurred on November 8, 2008 when 20 sailors and shipyard workers were killed and 20 more injured. This happened aboard the K-152 Nerpa when the fire extinguishing system was accidently activated, which caused mass suffocation. In December 2011 and again in September 2013 a number of sailors were injured in separate accidents at shipyards. The first in 2011 occurred aboard the nuclear submarine Yekaterinburg in the city of Murmansk when a blazing fire burned for nine hours, with flames reaching 10 meters in height! Another fire broke out on the nuclear submarine Tomsk at the shipyard in the far eastern city of Vladivostok, injuring 15 sailors.


Watch a Submarine Movie.

This Memorial Day (May 25), we shouldn’t forget U.S. Navy submarines that sacrificed comfort and sometimes lives. (In World War II more than 3,500 men perished on 52 sunken American subs.) We can remember them as we shelter at home without being confined to such claustrophobic spaces. We can watch Hollywood’s nods to submarines, films that break through the surface like the dolphins on the insignia of the Navy’s “silent service”: they crash through, unexpected and lively. In filmmakers’ subs, people are isolated and endangered, with characters and conflicts trapped together in smelly, hot, metal eggshells: refuges and prisons. Subs are ruthless and helpless, the ultimate in maneuverability and vulnerability. Recent decades’ sub flicks have ranged from “Phantom” with Ed Harris to “Crimson Tide,” featuring a struggle between Gene Hackman and Denzel Washington (plus a sub confrontation). Other ambitious efforts include “K-19: The Widowmaker” (starring Harrison Ford, based on a true story) and this year’s “Underwater” (a sci-fi/horror pic with Kristen Stewart). Whether action films or thrillers, movies that use subs as settings or plot devices number in the dozens, from exploration and rescue to combat and comedy. They include “20,000 Leagues Under the Sea,” “Voyage to The Bottom of The Sea,” “Operation Petticoat” and “Torpedo Alley.” The offbeat “Life Aquatic with Steve Zissou” with Bill Murray and “U-571,” the actioner starring Matthew McConaughey, are OK. Other decent, if more obscure, sub films are “The Deep Six” with Alan Ladd, “Corvette K-225″ with Randolph Scott, and “Submarine Command” with William Holden. Directors who “got their feet wet” in sub films include Frank Capra (“Submarine” was his first A picture), John Ford (“Submarine Patrol”) and Samuel Fuller (“Hell and High Water”). Some are barely adequate, such as “Gray Lady Down” with Stacy Keach and Christopher Reeve, and “Hellcats of the Navy” with Ronald Reagan. Others simply sink, like the comedy “Down Periscope,” and the dull “Sub Down.” So, if you like the sea, you’re dealing with close quarters and are entertained by ocean-going cat-and-mouse games, check out this “Diving Dozen”: “Das Boot” (“The Boat,” 1981). Jurgen Prochnow stars as the stoic, heroic captain in director Wolfgang Petersen’s Oscar-winner. A World War II German U-Boat and its crew of cynical vets and scared recruits, loyal Nazi’s and “good Germans” all endure a mission of predictable danger. “Crash Dive” (1943). Tyrone Power and Dana Andrews star as an ambitious officer and a selfless commander, respectively. Together on board, ashore they compete for the affections of Anne Baxter. “Destination Tokyo” (1943). Cary Grant commands a typical melting-pot crew, who idolize him. “I’d follow him to the Mikado’s bathtub,” one says. They almost do, invading Tokyo harbor. John Garfield co-stars. “The Enemy Below” (1957). Actor-turned-director Dick Powell made this superior outing starring Robert Mitchum and Curt Jurgens as commanders of opposing ships facing off – and developing a relationship. “The Hunt for Red October” (1990). Sean Connery and Alec Baldwin star in an adaptation of Tom Clancy’s best-selling thriller about a Soviet captain who defects to the United States in his sub. Praised for accuracy, it didn’t sacrifice drama for authenticity. James Earl Jones and Courtney B. Vance are featured. “On the Beach” (1959). Filmmaker Stanley Kramer directed Gregory Peck, Ava Gardner and Fred Astaire in this excellent adaptation of Nevil Shute’s novel about the universality of doomsday – even one caused by nuclear war. “Operation Pacific” (1951). John Wayne is Duke Gifford, a zealous submariner in this war yarn. Ward Bond is superb as “Pops,” and Patricia Neal is sweet as Duke’s ex-wife. “Run Silent, Run Deep” (1958). Robert Wise’s drama focuses on growing resentment between two leaders (Clark Gable and Burt Lancaster) over management style on their sub. “The Russians Are Coming, The Russians Are Coming” (1966). The premier submarine comedy, this Norman Jewison picture stars Alan Arkin, Carl Reiner and Jonathan Winters. The romp follows a hapless crew from a disabled Soviet sub off U.S. shores, appealing to equally hapless Americans for help. “Torpedo Run” (1958). Glenn Ford is a commander chasing the ship that led the Pearl Harbor attack. After missing (and sinking a ship carrying his imprisoned family), he’s obsessed. Ernest Borgnine co-stars. “Up Periscope” (1959). This exciting war movie has demolition man James Garner joining Edmund O’Brien’s sub for a reconnaissance mission to a remote enemy island. Alan Hale Jr. co-stars. “Yellow Submarine” (1968). Thematically different, this animated hit follows the Beatles’ battle with the Blue Meanies – using their remarkable smiling sub!


Italian Navy New Submarines

Italy’s Near Future Submarine (NFS) design will be Italian in nature. Currently the backbone of Italian Navy’s (Marina Militare) submarine force are four Type-212A submarines. These are equipped with fuel cell Air Independent Power (AIP), which makes them among the most stealthy submarines anywhere. But the Type-212A is best known as a German design, not Italian. In many respects the NFS is a return to the proud tradition of fiercely independent Italian submarine building.

The NFS will be a direct development of the Type-212A. Although the baseline Type-212A is largely a German design, Italy was a partner in the program. In a cost-conscious defense collaboration typical of the post-Cold War ’90s, Germany was to build six boats and Italy four. Italy’s were built locally by Fincantieri and incorporate some local systems. In particular they are armed with the Italian Whitehead A184 Mod.3 and newer Black Shark heavyweight torpedoes. And they carry an array of unique special forces equipment.  The NFS will feature a slight increase in overall length to accommodate a new intelligence gathering mast. This improvement is a parallel of Germany’s second batch of Type-212As, but with an Italian system. More significantly, it will incorporate Italian developed lithium-ion batteries in place of lead-acid. This is significant and is likely to be the first Western submarine to feature this technology. Currently only Japan fields submarines with this battery technology, although South Korea, and possibly China, are close behind. Lithium-ion batteries promise greater capacity which should translate into longer underwater running. Combined with the AIP this should make the NFS even more stealthy. Although it had previously been suggested that Italy would join German and Norway in the ‘Common Design’ version of the Type-212, there are indications that Italy is intent on creating its own waves. The Italian Navy states that there is to be no international collaboration. This is because "the high strategic value of the systems and their technological contents as well as the underlying capabilities industrial, historically protected exclusively nationally." It will be a small step in a return to a proud submarine design tradition. The Italian Navy was an early mover in submarine warfare, commissioning its first boat, Delfino, in 1895. This predates the famous USS Holland, which was the U.S. Navy’s first modern submarine. And unlike the early submarines in many other countries, the Delfino was good enough that it served for many years. During the World War One period Italy was an exporter of submarines, and it continued a strongly independent design philosophy into World War II. There was a break in submarine building following the War but production resumed in the 1960s. So it was a blow to adopt a German led design in the 1990s when Italy joined Germany's Type-212 project. Together with a mysterious submarine contract to build unspecified submarines for Qatar, the NFS could pave the way to a resurgence of Italian submarine building.


World’s Lightest Submarine: Nemo From U-Boat Worx


Now that you’ve settled on your next superyacht purchase or already own one, how about water toys? Jet skis and powerboats are so yesterday, why not get your very own submersible for the best underwater experience. In April this year, Dutch submersible maker U-Boat Worx announced their first series-produced submarine, the Nemo. U-Boat Worx has been in the business since 2005 but, until Nemo, they’ve only been making order-to-build toys for the rich. The Nemo is still a toy for the rich, make no mistake about it, but it will be mass-produced, with a limited array of customization options available. Using some of the tech and the know-how from the Super Yacht Sub series and C-Researcher Series, U-Boat Worx set out to deliver a submersible that is light and compact as to not be an inconvenience in terms of transport or storage, but still reliable enough to deliver the expected performance. The Nemo is the lightest manned submarine in the world and it’s also very small, about the size of two jet skis side by side, so they delivered on that first count. U-Boat Worx says it will also deliver on the latter. Weighing just 2,500 kg (5,510 pounds) and measuring only 155 cm (61 inches) in height, the Nemo can easily and safely be towed by an SUV. This is a first for any submersible. Its compact form allows storage in the tender garage of a yacht, but also on deck or on basically any other flat surface, without having to use a davit or a cradle. That’s another first right there. Although very compact, the Nemo can comfortably seat two passengers in a glass bubble that offers breathtaking underwater views. The entire experience is crafted around the driver, the maker says, so the Manta controller allows the pilot to share driving responsibilities with the passenger. It can dive as deep as 100 meters (330 feet) and can reach underwater speeds of about 3 knots. Arguably, that latter feature is not that impressive, but it surely beats what you can do while scuba diving. Even more impressively, the Nemo comes with an 8-hour autonomy. On-board tech includes pilot assist features, like auto-heading and auto-depth, and the Nemo also offers the possibility of remote control away from the yacht or shoreline. With every purchase of a Nemo submersible, owners will receive a 12-day training session at the U-Boat Worx Sub Center Curaçao facility. However, a certified pilot will have to be present while operating it, so if you’re considering the purchase, you might as well think about getting the proper certification. The Nemo comes with air conditioning and wireless underwater communications system, four spots and one floodlight as standard options. Additional options include a manipulator, extra lights, sonar and navigation package, and they will drive up the final price. “The ultra-modern design, sharp lines, hydrodynamic form and optimal power to weight ratio, combine to create an instant classic,” U-Boat Worx says of its latest product. “The NEMO’s fine detailing – including transparent nosecones, octagonal thruster ducts, car-like stern, and a fully acrylic pressurized hull – create a submarine with personality and performance.” This perfect combination of personality and performance, with a healthy serving of convenience, unlike anything else that’s been done before, comes with a price to match. Pricing for the standard version starts at €975,000, which is roughly $1.06 million at today’s exchange rate, excluding VAT. As of the time of writing, U-Boat Worx is still taking pre-orders on the Nemo, saying that the submarine will go into production as soon as market demand is met. That is to say, in order to start mass-producing it, they first want to make sure there are enough buyers for all examples made. When this happens, the Nemo will also become the first ever production-series submarine in the world. This sounds like the perfect occasion to get in on this exclusive deal, if you’ve been in the market for a submersible to take on your megayacht.


More Iranian Mini subs

Iran recently announced that it had put four more mini-submarines into service, for a total of eleven in the last five years. Over the last decade, Iran has, apparently with technical help from North Korea, been building mini-submarines for operations along its coasts, and throughout the Persian Gulf. The first two entered service about five years ago. The sub has a two man crew, and can carry three divers, or several naval mines, or a torpedo. The Iranians say they will use the mini-subs to lay mines or launch underwater commando attacks. While the North Koreans provided some technical assistance, the Iranian sub is a local design, smaller than most North Korean mini-subs, which is a reflection of the more turbulent seas found off the Korean coast. The Iranian subs appear to be based on the North Korean M100D, a 76 ton, 19 meter (58 foot) long boat that has a crew of four and can carry eight divers and their equipment. The North Koreans got the idea for the M100D when they bought the plans for a 25 ton Yugoslav mini-sub in the 1980s. Only four of those were built, apparently as experiments to develop a larger North Korean design. There are believed to be over 30 M100Ds, in addition to eleven of the Iranian variation.

Building subs like this are not high tech. A drug gang in Ecuador was recently caught building a 30 meter/98 foot long submarine on a jungle river. This boar was three meters/nine feet in diameter and capable of submerging to about 30 meters. The locally built boat had a periscope, conning tower and was air conditioned. It was captured where it was being assembled, and a nearby camp, for the builders, appeared to house about fifty people. This was the first such sub to be completed, but not the first to be built. Nearly a decade ago, Russian naval architects and engineers were discovered among those designing and building a similar, but larger, boat. However, that effort did not last, as the Russian designs were too complex and expensive. It was found easier to build semi-submersible craft. But more and more of these are being caught at sea. The recently discovered sub was not military grade. It could travel submerged, but not dive deep. It was built using the same fiberglass material used for the semi-submersible craft, but was larger, and had berths for six crew. There was space for about ten tons of cocaine. It probably cost several million dollars to build and was weeks away from completion and sea trials. The drug sub was similar to the small subs being built since the 1970s for offshore oil operations and underwater tourism.

North Korea has developed several mini-sub designs, most of them available to anyone with the cash to pay. The largest is the 250 ton Sang-O, which is actually a coastal sub modified for special operations. There is a crew of 19, plus either six scuba swimmer commandos, or a dozen men who can go ashore in an inflatable boat. Some Sang-Os have two or four torpedo tubes. Over thirty were built, and one was captured by South Korea when it ran aground in 1996. North Korea is believed to have fitted some of the Song-Os and M100Ds with acoustic tiles, to make them more difficult to detect by sonar. This technology was popular with the Russians, and that's where the North Koreans were believed to have got the technology. The most novel North Korean design is a submersible speedboat. This 13 meter (40 foot) boat looks like a speedboat, displaces ten tons and can carry up to eight people. It only submerges to a depth of about ten feet. Using a schnorkel apparatus (a pipe type device to bring in air and expel diesel engine fumes), the boat can move underwater. In 1998, a South Korean destroyer sank one of these. A follow on class displaced only five tons, and could carry six people (including one or two to run the boat). At least eight of these were believed built.


Looted Millions in Bribes from French Submarines Deal.

Asif Ali Zardari Looted Millions of Dollars of Bribes Paid to him in  a French Submarine Corruption Deal. Official Pakistani documents detailing how the country’s [illegal] president, Asif Ali Zardari, benefited from massive, secret payments connected to the sale of French submarines to Pakistan have been seized as evidence by a Paris magistrate investigating a suspected widespread scam surrounding the deal. The documents, revealed here for the first time by MediaPart, show that the payments to Zardari and others took place on the fringes of the sale of three Agosta-class submarines by the French defence contractor, the DCN, to Pakistan in the 1990s. The French sale succeeded against rival offers by Swedish and German contractors.  The sale, and the payment of bribes associated with it officially termed as commissions are at the core of what has become known as the ‘Karachi Affair’, currently the subject of two French judicial investigations and which has rocked the French political establishment with its potential far-reaching ramifications within France. A key allegation in the developing affair is that the cancellation of commissions paid out in the submarine deal was the motive behind a  ‘suicide’ bomb attack in Karachi on May 8th, 2002, that left 11 French engineers dead. They were in Pakistan to help build one of the Agosta submarines. Increasing evidence suggests that cancellation of the commissions, ordered by former French President Jacques Chirac, was decided after it was discovered they were in part re-routed back to France to fund political activities of Chirac’s principal political rival, Edouard Balladur. The documents, now in possession of Paris-based judge Renaud Van Ruymbeke, were found during a French police search in June 2010 of the home of Amir Lodhi, one of the intermediaries involved in securing the Agosta contract. Lodhi held a copy of a report by a Pakistani anti-corruption service, the Ehtesab [Accountability] Cell. Lodhi, 61, the brother of a former Pakistani ambassador to the United States [Maleeha Lodhi], is a close friend of Zardari, who [illegally] became president of Pakistan in 2008 one year after the assassination of his wife, Benazir Bhutto. The raid on Lodhi’s home in the French capital [Paris] was carried out by detectives from the French police national financial investigation division, the DNIF, (Division nationale des investigations financiers). The Ehtesab Cell documents were the object of a formal report by the DNIF, established on June 17th, 2010, and reveals that Zardari received backhanders worth 6,934,296 euros between October and December 1994. That report is now among the evidence collected by Van Ruymbeke in his investigations launched last autumn into the financial aspect of the Agosta submarine sale, and in particular whether commissions paid abroad were re-routed to fund political activities within France. Originally written in English, the Pakistani document was translated by the DNIF investigators and now provides the first clear details about the scale of the payments made to Zardari, amounting to several million euros, as well as the channels used, including offshore companies, bank accounts and a British tax haven. Bank Transfers to the Virgin Islands.The Agosta submarine contract was signed between the two countries [France and Pakistan] on September 21st, 1994, just weeks before the first payments began. At the time, Zardari was a minister in the Pakistani government then led by his wife, Prime Minister Benazir Bhutto. Importantly, Zardari was the key figure for all public contracts signed with foreign countries. That position earned Zardari the unflattering nickname in his own country of “Mister 10%”. The main document seized by French investigators is a photocopy of an original dated November 9th, 1997, concerning a request by Pakistan to Switzerland for cooperation in a judicial investigation. The request by the Pakistani authorities to Switzerland aimed, according to the officer, “to obtain all the necessary information to pursue a criminal investigation and to try the former prime minister of Pakistan, Madame Bhutto, her husband, Monsieur Asif Ali Zardari, her mother, Begum Nusrat Bhutto and the other members of the Bhutto government, public servants and civilians implicated in the conspiracy of Madame Bhutto and/or her husband to misappropriate public funds for their own profit.” The French police report said the document explicitly referred to the Agosta contract: “This request concerns several cases of malpractice including that of the purchase of French submarines.” According to the DNIF investigators “the chronology and the currency [of the sums paid] suggest that these payments are secret commissions paid by the DCN-I [the commercial arm of the submarine builders DCN] to Monsieur Zardari and Monsieur Lodhi for their considerable service in assuring that DCN-I got the contract.” Huge sums are recorded at the end of 1994 alone, when a company called Marleton Business Inc. was set up through a lawyer in the tax haven of the British Virgin Islands for use by Zardari. A first payment of some of 5.5 million francs (about 838,000 euros) took place in October 1994  “of which 70% goes to Monsieur Zardari (AAZ) and 30% to Monsieur Lodhi  (AL),” noted the French police report.

Sarkozy’s Ministry ‘Approved’ Bribe Sums.

A second transfer took place two months later, in December, for an altogether larger sum of 59.48 million francs, (about 9.06 million euros) “divided into 41.636 million [francs] for Monsieur Zardari and 17.844 million for Monsieur Lodhi”. That represented 6,934,296 euros for the current [unlawful] president of Pakistan, and 2,971,841 euros for his partner. According to the French investigators, the official Pakistani documents seized in Lohdi’s Paris home also explain that “Messieurs Lodhi and Zardari received their bribes in the bank accounts of a series of offshore companies.” The report says they are all based in the Virgin Islands and they are identified by the DNIF as: Marvil Associated Inc., Penbury Finance, Oxton Trading, Crimities Holding and Dustan Trading. The banks involved in the payments were also recorded in the Pakistani documents, as well as the bank accounts used. “The commissions paid into the accounts, notably opened by these companies at the Pasche bank and the bank of Piguet et Cie, in Switzerland, were probably supplied by transfer from the Banque francaise du Commerce exterieur [French bank of Foreign Trade], account number 2700 0008358 or  IV10000083580.” Several high-profile witnesses questioned in November and December 2010 by judge Van Ruymbeke have insisted that the bribes paid in 1994 were perfectly legal and were approved by France’s then-Defence Minister, Francois Leotard, and its budget minister, now France’s President, Nicolas Sarkozy. In a statement he gave to Van Ruymbeke on November 9th, 2010, former DCN-I Finance Director, Gerard-Philippe Menayas, said “the total volume of the commissions was validated, contract by contract, by the ministers of the budget and defence.” In a statement given to judge Van Ruymbeke on December 7th, 2010, Jacques Dewatre, who in 1994 was head of the French foreign intelligence service, now called the DGSE, testified that “The approval for commissions is the responsibility of services which depend upon the Minister of Defence and the Minister of the Budget.”

MediaPart has learnt Van Ruymbeke’s investigation has already established that, in order to convince the Pakistani authorities to choose the French submarines, a very structured network of corruption was established by a French state company dedicated to such activities. This was the Societe francaise de materiels armement, the SOFMA, which partnered the designers and builders of the submarines, the DCN. Van Ruymbeke has evidence that the SOFMA set aside the equivalent in francs of 51.6 million euros for bribes to be paid out in the Pakistan deal. Influential agents working with the SOFMA used the money to gain the favours of numerous Pakistani dignitaries, in both military and political spheres. While the practice of commission payments was then legal for France, the reception of bribes was illegal in Pakistan. Asif Ali Zardari was one of the main benefactors of the paid bribes, according to a former SOFMA Managing Director, Henri Guittet. He evaluated the sum paid to Zardari as being 4% of the total value of the sales contract, which amounts to a value of 33 million euros. “I believe there was one percent paid upon the signature of the sales contract, which means at the moment when everything can get underway and when notably the deposit and [partial] down payment has been paid, and one percent later,” he said in a formal statement. “The remaining two percent was pro rata with the payment of the clients.” But French judicial investigators are investigating whether the Agosta contract also involved illegal payments in France. It was in the summer of 1994, despite the fact that negotiations with Pakistan over the sale were already successfully concluded, that the government of then-Prime Minister Edouard Balladour imposed two Lebanese intermediaries in the contract, Ziad Takieddine and Abdulrahman El-Assir. They were promised supplemantary commission payments worth more than 30 million euros. Both judge Van Ruymbeke and judge Marc Trevedic, who is heading investigations into the murders of the French engineers, have collected evidence suggesting that part of the supplementary commissions was destined for Balladur’s 1995 presidential election campaign. Trevedic’s investigation has discarded the theory touted by the Pakistani authorities that the engineers were targeted by al-CIA-da. He is now centering on suspicions that the bomb attack was directly or indirectly linked to the secret financial arrangements surrounding the Agosta deal. More precisely that it was in retaliation for the non-payment of commissions promised to Pakistanis after they were all blocked by Balladur’s rival Jacques Chirac, after he won the 1995 elections.


Canada to buy Nuclear Submarines.

CBC News has learned the Harper government is considering buying nuclear submarines to replace its problem-plagued fleet of diesel-powered subs, all of which are currently awash in red ink and out of service for major repairs. The four second-hand subs Jean Chrétien’s Liberal government bought from the British navy in 1998 for $750 million were portrayed at the time as the military bargain of the century. Instead, they have spent almost all of their time in naval repair yards, submerging Canadian taxpayers in an ocean of bills now totalling more than $1 billion and counting. One of the subs, HMCS Chicoutimi, has been in active service of the Royal Canadian Navy exactly two days in the 13 years since it was purchased from the Brits. The Chicoutimi caught fire on its maiden voyage from the U.K. to Canada, killing one sailor and injuring a number of others. It has been in the repair shop ever since, and isn’t expected back in service for at least another two years and $400 million more in repairs and retrofits. National Defence said this week that one of the subs, the Victoria, could be back in service in 2012. The other three would remain out of service until at least 2013. One may not be out of the repair shop until 2016. By that time, the submarines will have cost taxpayers an estimated $3 billion, almost enough to have bought all new subs in the first place. But the real problem is that by the time the whole fleet is in active service for the first time in 2016, the submarines will already be almost 30 years old with only perhaps 10 years of life left in them. High-ranking sources tell CBC News the government is actively considering cutting its losses on the dud subs, and mothballing some if not all of them. Defence Minister Peter MacKay is hinting they might be replaced with nuclear submarines that could patrol under the Arctic ice, something the existing diesel-electric subs cannot do. Outside the Commons this week, MacKay told CBC News the government is anxious to have its submarine fleet fully operational as soon as possible, providing a “very important capability for the Canadian Forces.” But asked whether the government might look at other subs, MacKay said: “Well there was a position taken some time ago to go with diesel-electric. “But you know, in an ideal world, I know nuclear subs are what's needed under deep water, deep ice.” Nuclear submarines are hugely expensive — they start around $3 billion apiece — and it is unclear where the Harper government would find that kind of money, much less how it could justify such an enormous expenditure during a period of supposed austerity. The last time a Canadian government seriously considered nuclear subs was in the late 1980s before then prime minister Brian Mulroney sank the whole program amid a public uproar. A decade later, the Chrétien government bought the four used diesel subs from the British navy in large part because it was seen as such a huge bargain. Senator Art Eggleton, who was Liberal defence minister at the time, told CBC News Thursday that his government gave "absolutely no consideration" to buying nuclear submarines, although some inside the navy were pushing for them. "We were coming out of a period of budget-cutting and nuclear submarines would have been far too expensive." Instead, the British navy was offering a deal Eggleton said the Canadian military couldn’t refuse — the four diesel-electric submarines mothballed after only two years in service when the Royal Navy switched to nuclear subs. "We got them at a quarter of the cost it would have cost to build new ones," Eggleton says. "We wouldn’t have had the money to build new ones." He concedes the Liberal government gave serious consideration to not having submarines at all. "It was either buy these subs, or get out of the submarine business altogether." Some defence critics think that’s exactly what the current Conservative government should be considering — scrapping the problem-plagued diesel-electric fleet rather than throwing what they see as good money after bad. “When you look at the cost of trying to get these things seaworthy again, it just doesn’t make sense," said Steven Staples, president of the Rideau Institute on defence issues. The Harper government has just awarded a $25-billion contract to build a new fleet of Canadian destroyers and frigates, and Staples says that should be enough. “Once you are in a hole, the first thing that you should do is stop digging, so I think that it is time to say goodbye to the submarines right now and focus on the new surface fleet.” Staples says the history of the diesel subs suggests Canada could get by without them. "The fact that all four submarines are sitting tied up at a dry dock right now doesn’t mean that Canada is in any great danger. It makes no difference to our security.”

New Nuke-carrying Borey Class Submarine Tested.

Sea trials of the new Rusian Borey class submarine, the Aleksandr Nevsky, has started in the White Sea. The boat is the first series-produced vessel of its kind and is to become part of Russia’s nuclear deterrence. The submarine was laid down in March 2004 and first launched in December 2010 reports Itar-Tass. The company trial of the Nevsky is done under the command of Captain 1st rank Vasily Tankovid. His crew come from the Pacific Fleet and have passed special training course to man the modern submarine. The first vessel of this class, the Yury Dolgoruky, is currently involved in fire tests of the nuclear ballistic missile Bulava and its upgraded version the Liner. Producer of the submarines, Sevmash shipyards, are building another boat of the series, the Vladimir Monomakh, at the moment. The Navy wants a total of eight Borey class submarines deployed by 2020. They will be the backbone of Russian naval nuclear deterrence for at least several decades to come. Each vessel costs about $750 million, according to the producer. The submarines are 170 meters long, 13.5 meters wide, have a displacement of 24,000 tonnes, can submerge up to 450 meters and travel at speeds of up to 29 knots. They can carry between 12 and 20 MIRVed nuclear missiles, depending on the vessel. They are also armed with six 533-caliber torpedo tubes, which fire Vyuga cruise missiles. The vessels are manned by 107 officers and sailors. They are equipped with a rescue capsule, which can bring call crew members back to the surface in an emergency.

Turkish submarine deal with Germany.

A major loan deal between German banks and the Turkish Treasury has rescued a multibillion-dollar submarine contract between the Turkish state and German shipyard Howaldswerke Deutsche Werft, or HDW. Turkish officials and HDW had long been in tough negotiations over the terms of finance for the submarine deal, and some industry sources had expected a collapse of talks as they dragged for several months. Still the Turkish Treasury announced on the last day of 2010 that a financing deal finally had been reached. “For the financing of the production of [six] submarines in Turkey, an export credit agreement in the amount of 1.878 billion euros was signed between the Undersecretariat of the Treasury and bank consortium led by Bayerische Landesbank, and a commercial loan agreement in the amount of 309 million euros was signed between the Undersecretariat of the Treasury and a bank consortium led by WestLB London Branch on Dec. 31. The total amount of financing provided equals 2.187 billion euros,” the statement said. A procurement official familiar with the program said the loan deal has paved the way for finalization of the contract. “The deal has removed the last obstacle against the contract taking effect,” he said. Turkey and HDW, an affiliate of the conglomerate ThyssenKrupp, signed the submarine contract in July 2009, but no price was disclosed at the time. HDW won the contract in partnership with the Britain-based Marine Force International LLP. Industry sources said submarines were probably the only naval platform that Turkey needed nearly full foreign technology to obtain. "That situation will not change in the foreseeable future despite major progress at Turkish shipyards," said a source, on condition of anonymity. Turkey is building its own corvette-type ships and hopes to produce its own frigates by the end of this decade. Several Turkish shipyards already are producing patrol boats, coast guard boats and other amphibious platforms. Turkey originally selected HDW against French and Spanish rivals in the summer of 2008, when officials said the German offer was worth 2.5 billion euros. Renegotiations over price and a clear road map for Turkish local participation have led to a final agreement on a price reduction of over 500 million euros, bringing down the final cost to around 2 billion euros. Under the Turkish modern submarine program, the non-nuclear vessels will be built at the Navy’s Gölcük Shipyard on the Marmara Sea coast near Istanbul. The submarine program will form Turkey's largest defense modernization project after a planned $11 billion deal to buy 100 next-generation F-35 Joint Strike Fighter Lightning II aircraft for the Air Force. Ankara is hoping the new U-219 submarines will enter service shortly after 2015. This is two years later than the original schedule drawn up when the program originally was launched a few years ago. With a decision to go ahead with the new submarine program Turkey scrapped an earlier modernization plan for its older Ay-class submarines, also built by HDW.


Mini-Submarines to investigate Lake Geneva pollution.

Two mini-submarines that have filmed the wreckage of the doomed luxury cruise liner Titanic will dive into Lake Geneva to gauge its pollution levels, Swiss researchers said Tuesday. Lionel Pousaz, spokesman for the Federal Polytechnic of Lausanne, said that final trials by submarines Mir 1 and Mir 2 were carried out at the lake on Tuesday and that the three-month-long exploration would begin Wednesday. The two submarines have plumbed depths of more than 4,000 metres (13,000 feet) at the bottom of the Arctic ocean, and were also used to film the wreckage of the ill-fated Titanic and the Bismarck battleship. The exploration of Lake Geneva, lying between France and Switzerland with a surface area of some 600 square kilometres (230 square miles), will focus on bacteria in the lake's sediments at a depth of more than 300 metres. "The bacteria are indicators of pollution" and will help the scientists measure the presence of toxic elements, Pousaz said. The mini-submarines, equipped with gauges capable of determining the density of molecules in the water, will also track micropollutants which may have escaped treatment plants. These elements are expected to be found in the lake's plankton and fish. In addition, scientists are planning to examine how water circulates in the lake by taking temperatures of different layers. "A drop of water can take up to 12 years to cross the lake," Pousaz noted.


Fatal Shooting on Nuclear Submarine.

One person has been killed and another is in a critical condition after being shot on board a British nuclear submarine. A navy serviceman has been arrested after the incident on HMS Astute, which is docked in Southampton. Hampshire police and the Ministry of Defence have said the incident was not terrorist related and there had been no risk to the public. All three involved were Royal Navy personnel. Several police vehicles were sent to the Eastern Docks and officers could be seen on the gangway of the £1bn submarine. A police spokesman said: "Hampshire police were called by their Ministry of Defence colleagues at 12.12pm today and are currently liaising with them to establish the exact circumstances of the incident." An MoD spokesman said: "Two Royal Navy personnel have been involved in a firearms incident at Southampton docks where HMS Astute is alongside. Sadly one has now died as a result of his injuries. "The Royal Navy is now attempting to inform their families as a matter of urgency. A third Royal Navy serviceman has been arrested by Hampshire constabulary and is now in custody. "This incident was not terrorist-related and there is no threat to the wider public. We are co-operating fully with the police investigation and a Royal Navy service investigation will begin in due course." Police were refusing to confirm reports that the shooting took place in a control room, or that the two victims were officers and the person arrested an able seaman. A spokesman said details would not be given until next of kin had been informed. A navy source said it was believed a pistol was used. Detectives are meeting naval officials on board the vessel. Astute was not open to the public while in Southampton but civic leaders, sea cadets, scouts and school and college parties were being invited on board. Visitors on board at the time of the shooting included the leader of Southampton city council, Royston Smith; the mayor, Carol Cunio; and the chief executive, Alistair Meill. Southampton Itchen MP and former cabinet member John Denham expressed concern about security issues relating to the incident. "It is a matter of grave concern that an incident like this could occur on a visiting Royal Navy vessel. In due course I will be asking ministers to ensure this incident is fully explained with complete openness about any potential risk to the public. "I wish to express my deepest sypathy to the victims of this incident and their families." HMS Astute is described by the Royal Navy as the first of a new class of vessel designed to be the largest and most powerful nuclear attack submarine it has ever sailed. This is Astute's first trip south. It was built in Barrow-in-Furness, Cumbria, and is based at Faslane, in Scotland. The five-day visit to Southampton was billed as the first chance for people outside north-west England and Scotland to see it. Astute's commanding officer, Commander Iain Breckenridge, said before arriving in Southampton: "My ship's company and I are very much looking forward to the visit and meeting the people of the city. And I'm sure scouts, school pupils and other visitors will be impressed with the capabilities of this formidable vessel." Since commissioning last August the Astute has had what the navy calls an interesting time, including running aground off the Isle of Skye. It is in the middle of a "demanding" trials programme. The submarine's Spearfish torpedoes and Tomahawk cruise missiles are capable of delivering pinpoint strikes from 1,240 miles with conventional weapons. Its nuclear reactor means it does not need refuelling and it makes its own air and water, enabling it to circumnavigate the globe without surfacing. It was the first in a fleet of six that will replace the Royal Navy's Trafalgar class submarines.


China And The Blue Water Fleet.

A year after it commissioned its first ASR (submarine support and rescue ship), China recently launched a second one. These Dalao (Type 926 Submarine Tender) class ASRs displace 9,500 tons each and have a winch aft (in the rear of the ship) that can lower a rescue capsule 300 meters (930 feet) to rescue 18 sailors at a time from a submarine. The winch can also handle a new LR7 rescue mini-sub. China is buying at least one LR7 rescue submarine from Britain. The LR7 can go down to 500 meters (1,550 feet) and stay submerged for four days. The 25 ton LR7 is an improved version of the 21 ton LR5. The Chinese are investing more in submarine rescue because they are sending their subs to sea more often. The Chinese know that their sub crews are largely inexperienced, and that inexperienced crews have more accidents. The Chinese also accept that the only way to get experience is to send subs out a lot, and deal with the problems as they arise. The worse problems are those that involve a submarine losing power, ending up on the ocean bottom and in need of rescue before the air runs out. This is where the ASRs and their rescue equipment come in. The ASRs are also very useful in helping with repairing subs that are far at sea. In short, investing in ASRs means China is serious about building a blue water (way beyond “brown” coastal waters) submarine fleet.

The remains of the German submarine U-513 were recently discovered off the coast of Brazil. The sub was sunk by bombs dropped from an American plane in July 1943. Only 7 of the 53 men on board survived the attack. One survivor reported, “suddenly the bombs began to fall, one fell off the starboard side, and 3 fell right in front, then exploded....” Although Brazil had been technically neutral at the beginning of the war, it allowed the US to establish air bases from which it could launch attacks on submarines that were becoming a serious threat to allied shipping. As a result, Brazilian ships became a prime target for the U-boats. During the first half of 1942, German subs sank 13 Brazilian merchant vessels. In August, the U-507 sank 5 Brazilian ships in 2 days killing more that 600 people. In all, 21 German and two Italian submarines were responsible for the sinking of 36 Brazilian merchant ships, causing 1,691 drownings and 1,079 other casualties. The sinkings were a major reason the Brazilian government ultimately declared war against the Axis. Researchers from Kat Schurmann Institute and Vale do Itajai University located the U-513 almost 68 years to the day after it sank. Using a combination of high tech equipment the 252 foot long submarine was discovered lying at a depth of 245 feet, 75 miles off the Brazilian state of Santa Catarina. Members of the Schurmann family, founders of the Kat Schurmann Institute, were actively involved in the search. The family had procured a JW Fishers side scan system shortly after opening the institute, an organization that was devoted to fostering sustainability and preservation of the oceans and coastal habitats. The primary use for the sonar was to map the reef structures off the Brazilian coast. The hunt for the submarine started out as a hobby for family patriach Wilfredo when he was told the story of the sub’s demise by a fellow mariner while sailing the Caribbean. Over the next eight years he spent many hours gathering information. He studied official accounts of the sinking, read survivors stories, talked to submarine officers in the Brazilian Navy, and even acquired a book titled “The U-Boat Commanders Handbook”. But one of the most useful sources of information proved to be local fisherman. They told him about the “rippers”, obstructions on the ocean floor that would grab fishing nets and tear them up. Wilfredo was provided with the coordinates of some of these rippers. Combining pieces of information gleaned from historical accounts along with the position coordinates, the researchers were able to determine the most probable locations that would hold their prize. At every opportunity a group from the institute, including Schurmann’s sons, would take the side scan out and survey the underwater obstructions. The youngest son, Wilhelm, had attended a training course at Fishers factory in Massachusetts and was well versed on the operation of the side scan and use of the SONAR VIEW software. On July 14, 2011 their hard work paid off and the side scan produced definitive images of the remains of a pressure hull on the ocean bottom. The final resting place of the U-513 was had been uncovered. Interestingly, the submarine was captained by Friedrich Guggenberger, who was one of the seven survivors of the sinking. The captain had gained notoriety in the submarine corps while commanding another U-boat in 1941. He torpedoed the aircraft carrier HMS Ark Royal, which despite the British Navy’s efforts to tow it to port, sank the next day. After the war, the German Navy was reestablished and Guggenberger joined the service again. In the 1950s he travelled to US and studied at the Newport War College in Rhode Island. He eventually rose to the rank of admiral in the German Federal Navy and went on to become Deputy Chief of Staff in the NATO command Allied Forces Northern Europe.


Jinxed Nuclear Submarine’s malfunction could have killed its entire crew.

The Royal Navy’s latest £1.2 billion nuclear submarine, HMS Astute, has been towed back to base after a malfunction which could have killed the entire crew, the Sunday Herald can reveal. The hi-tech stealth vessel was taken to the Faslane Naval Base on the Clyde late on Friday when it suffered “a technical issue with hydraulics”, according to a Ministry of Defence (MoD) source. “This needs to be fixed to make sure it can dive properly,” the source said. “It could take days, or it could take weeks.” Experts say that the boat’s hydroplanes, which enable it to dive or surface, are hydraulically controlled. If they fail, the boat could be lost, along with its entire crew of 98. The ill-fated HMS Astute is infamous for being the scene of a fatal shooting a month ago when it was docked in Southampton, and for accidentally running aground off the Isle of Skye last October. The boat has been plagued by a series of other mishaps, including a fire, being hit by a falling ramp and problems with its toilets. HMS Astute left Faslane on Wednesday for sea trials, but returned soon after just two days. One insider told the Sunday Herald that the captain, Commander Iain Breckenridge, had “no confidence in the performance of the vessel”. The nuclear consultant, John Large, who has advised governments on submarine safety, pointed out that the hydraulics that controlled the hydroplanes were “a fundamental safety system that can’t be ignored”. He said: “If you don’t have the hydraulics, the boat could sink with all hands on board. It’s a serious problem.” The danger that submarines like HMS Astute could have difficulties surfacing was highlighted in a secret report by the MoD’s own nuclear safety watchdog. Commodore Andrew McFarlane, the chief defence nuclear safety regulator, warned that there was a “risk of multiple fatalities resulting from loss of depth control”. His report was released under freedom of information law with large sections blacked out. But researchers discovered that the censored text could be read simply by cutting and pasting it into a new document. This revealed that British submariners were more likely to drown than their American counterparts if the reactor that powered their boat failed while they are under water. British submarines “accept a much lower reliability from the main propulsion system” and the back-up system “will not provide sufficient dynamic lift”, McFarlane said. HMS Astute is the first of seven “state-of-the-art” Astute class submarines, which are being built at Barrow in Cumbria. They have been beset by delays and budget overruns, and could end up costing over £10bn. The Royal Navy operates 10 other nuclear-powered submarines out of Faslane, including four Vanguard class boats, which carry Trident nuclear missiles. The Sunday Herald disclosed in April that one of them, HMS Vengeance, had to cut short a training exercise in the North Atlantic when its propeller became blocked with debris.


HMS Astute “the toilets won't work”.

JINXED submarine HMS Astute has suffered another mishap - after its toilets broke down. The Royal Navy's most advanced sub had to return to port at Faslane naval base after the malfunction left her 90 crew members unable to spend a penny. Astute, which made the headlines in October after running aground during trials near Skye, was also hit by a failure to her weapons support systems during her latest sea trials. Naval sources said the nuclear-powered vessel will be confined to port for up to six weeks as engineers carry out repairs. A Ministry of Defence spokesman said yesterday: "Work is ongoing to fix the weapons support and sewage problems." The submarine, which was completed four years late and massively over budget, has been hit by problems since it was commissioned into the Navy last August. Astute ran aground near the Skye Bridge on October 22 and was stuck on a shingle bank for around 10 hours before being towed free. The Record later revealed the sub was damaged when coastguard tug Anglian Prince - which had been sent to free it - collided with the sub and tore off one of its navigation fins. Astute's captain, Commander Andy Coles - dubbed Captain Calamity - was relieved of command in November following a probe into the grounding. He was replaced by Commander Iain Breckenridge but the new chief's maiden voyage was short lived. Astute broke down in December on its first day back at sea and had to again limp back to Faslane after experts identified a fault in the sub's steam plant. Astute, the first in a class of six new submarines, was launched in 2007 and commissioned into the Navy four years behind schedule. It can sail around the world without having to surface.


Chinese Jin-SSBNs Getting Ready?

New Jin-class nuclear ballistic missile submarines have sailed to the Xiaopingdao naval base near Dalian, a naval base used to outfit submarines for ballistic missile flight tests. The arrival raises the obvious question if the Jin-class is finally reaching a point of operational readiness where it can do what it was designed for: launching nuclear long-range ballistic missiles. The Pentagon reported a year ago that development of the missile – known as the Julang-2 (JL-2) – had run into developmental problems and failed its final test launches. Even if the Jin subs are in Xiaopingdao to load out for upcoming missile tests and manage to pull it off, the submarines are unlikely to become operational in the sense that U.S. missile submarines are operational when they sail on patrols. Chinese ballistic missiles submarines have never sailed on a deterrent patrol or deployed with nuclear weapons on board. Chinese nuclear weapons are stored on land in facilities controlled by the Central Military Commission (CMC), and the Chinese military only has a limited capability to communicate with the submarines while at sea. It is possible, but unknown, that the two submarines are the same two boats that have seen fitting out at the Huludao shipyard for the past several years. One submarine was also seen at Jianggezhuang naval base in August 2010 (see below). Prior to that a Jin-class SSBN was seen seen at Xiaopingdao in March 2009, and at Hainan Island in February 2008. The first Jin-class boat was spotted in July 2007 on a satellite photo from late-2006.. Indeed, it is unclear how China intends to utilize the Jin-class submarines once they becomes operational; they are unlikely to be deployed with nuclear weapons on board in peacetime like U.S. missile submarines, so will China use them as surge capability in times of crisis? Deploying nuclear weapons on Jin-class submarines at sea in a crisis where they would be exposed to U.S. attack submarines seems like a strange strategy given China’s obsession with protecting the survivability of its strategic nuclear forces. The Jin-class SSBN force seems more like a prestige project – something China has to have as a big military power.


Israel gets ready to receive German new submarines.

The Israel Navy is making advanced preparations to absorb two new German-made Dolphin-class submarines, IDF journal Bamachaneh reported in its latest issue. The number of soldiers selected for submarine warfare has grown by 30% in the latest IDF recruitment batches, in order to man the additional submarines. The Navy currently has three submarines, also of the Dolphin class, so the addition of two subs means that the force is growing 66% bigger. “We are in mid-process and are slowly adding more crews to be trained for service in the submarines,” explained Naval Instruction Base Commander Col. Ronen Nimni. “We are also taking care to add crew commanders who closely mentor the soldiers.” More officers are being trained for submarine posts as well. The number of cadets who will be trained for submarine command positions is rising by 35%.


Drug Sub.

Remember the drug smugglers’ submarine that was captured by Ecuadoran police last year? The 75-foot boat was capable of shipping about 9 tons of cocaine. Jim Popkin of Wired wrote a detailed look at its design after reading a report by the US Navy: The hull, they discovered, was made from a costly and exotic mixture of Kevlar and carbon fiber, tough enough to withstand modest ocean pressures but difficult to trace at sea. Like a classic German U-boat, the drug-running submarine uses diesel engines on the surface and battery-powered electric motors when submerged. With a crew of four to six, it has a maximum operational range of 6,800 nautical miles on the surface and can go 10 days without refueling. Packed with 249 lead-acid batteries, the behemoth can also travel silently underwater for up to 18 hours before recharging. The most valuable feature, though, is the cargo bay, capable of holding up to 9 tons of cocaine—a street value of about $250 million. The vessel ferries that precious payload using a GPS chart plotter with side-scan capabilities and a high-frequency radio—essential gadgetry to ensure on-time deliveries. There’s also an electro-optical periscope and an infrared camera mounted on the conning tower—visual aids that supplement two miniature windows in the makeshift cockpit.


India to issue $11 bn tender for six more submarines.

To shore up its depleting submarine fleet, India will this year issue a $11 billion global tender for building six more next generation vessels, navy chief Admiral Nirmal Verma said here Wednesday. The new submarine programme, known as Project 75I, will be added to the six Scorpenes that are being built at the Mumbai-based Mazagon Docks Limited (MDL) under Project 75. 'The government has already cleared Project 75I. At the moment we are going through the process of Request For Information (RFI). I hope within this year we will be able to push the tender,' Verma said on the sidelines of a National Maritime Foundation seminar on submarines. French firm DCNS is now executing the Project 75 Scorpene orders in collaboration with MDL at a cost of $4 billion. The Indian Navy operates 14 diesel-electric submarines at present after it decommissioned two Foxtrot class submarines last year. Of the 14 submarines, 10 are Kilo class Soviet-origin vessels and the rest are HDW German-origin vessels. The navy issued the RFI for Project 75I in September last year and some of the global firms that have responded to it are Russian Rosoboronexport, French DCNS/Armaris, German HDW and Spanish Navantia. The Defence Acquisition Council (DAC) chaired by Defence Minister A.K. Antony had given a nod for Project 75I last July. On the capabilities of the Project 75I submarines, Verma said they would have better capabilities to detect and hide from enemies and an improved combat management system, sensors and detection range. Under Project 75I, the Air Independent Propulsion (AIP) technology will be incorporated in the submarines to increase their capability to remain submerged for longer periods of time. India is expected to induct the 12 Project 75 and 75I submarines in the next decade-and-a-half. The submarine induction programme of the navy has sufferred due to a three-year delay in the Scorpene project, resulting in the fast depletion of the fleet. The 12 vessels would now be inducted one after the other over six years beginning 2012. The vessels are part of the 30-vessel submarine induction plans of the navy that was approved early in the last decade. The number of navy's submarines is likely to be just the half of the current 14 vessels in 2015, as most of them are aging and would be decommissioned in the next five years. Under the plans for Project 75I, India would order two submarines from a collaborating foreign shipyard while the rest four would be built at two different Indian shipyards -- Mazagon Docks Limited and Visakhapatnam-based Hindustan Shipyard. The navy was keen on a private domestic shipyard to tie-up with a foreign vendor for the six new submarines as it was of the view that Mazagon Docks was already 'busting at its seams' with orders and timely delivery of the second line of submarines was 'critical' to maintaining its operational readiness. But the DAC decided otherwise, holding that the capabilities acquired by Mazagon Docks through the Scorpene project should not be wasted.


Indian Navy wants Deep Submergence Rescue Vessels.

Indian Navy says that it intends to procure two kits of free swimming deep submergence rescue vessels (DSRV) and associated equipment for operation from diving support vessels (DSV’s) or mother ships. Indian Navy has requested information from firms who have designed and constructed a modern free swimming DSRV which is currently in service with any navy or under going sea trials. The final date for submissions is 17 January 2011. One of the parameters Indian Navy is looking for is continuous operation for 72 hrs. Although, the number of submarines in Indian navy is dwindling, it is expected to field two nuclear submarines in near future. Indian navy has limited experience in handling the nuclear submarines. In addition, the existing submarines are not of new make. Indian Navy recently retired last of its Foxtrot submarines. On 10 January 2008, INS Sindhughosh had met with an accident. The second ramification is the absence of a Deep Sea Rescue Vehicle (DSRV). The Canadian contract for a DSRV is under investigation of corruption. Indian Navy has not purchased another one. It is a wake up call. The status of India-U.S. agreement for Submarine rescue is not yet clear.


Twenty Years since Komsomolets Sank.

On April 7, 1989, the Soviet Union’s most advanced and unique nuclear powered submarine -Komsomolets - sank in the Norwegian Sea following a fire. 42 submariners died, while a Norwegian surveillance aircraft was circling over the sinking submarine. Komsomolets was on her way home to the Northern fleet’s submarine base at Zapadnaya Litsa on the Kola Peninsula after a patrol in the northern waters in the morning on April 7. The submarine, called the "Golden Fish" among the Northern fleet's officers, was the only Mike-class, a unique titanium-hulled submarine commissioned in 1984. Komsomolets could go deep, very deep. Able to dive down to 1,000 meter (3,000 feet) under the surface she was impossible to spot from any American satellites or underwater sound-detections systems. Cold War analysts said Komsomolets was the Soviet Unions answer to Ronald Reagen’s Star Wars programme. When the Americans went high up to space, the Soviets dive deeper down with its nuclear weapons. Cruising submerged at 1000 meters she could elude NATO anti-submarine systems and bring its two nuclear warheads right up to North America's eastern seaboard. Komsomolets was armed with two nuclear-tipped torpedoes on the last voyage. This April morning was as normal on board. The crew was looking forward to disembark after 37 days at sea. At home, in Zapadnaya Litsa, their wives or girlfriends, maybe some children, relatives and friends were waiting for the crew to come home. Like many times before. Zapadnaya Litsa is the most western located submarine base on the Kola Peninsula. Its distance from the border to Norway is just some 50 kilometres. Then, at 11:03 Moscow time the alarm bell started to ring. The crew ran to their different emergency posts and tasks. They had done this many times before during drills. But this morning it was no drill. A fire had started in the very rear compartment of the submarine. When the alarm bell went off Komsomolets was at a depth of 160 meters some 180 kilometres south of Bear Island. Eleven minutes after the fire was detected Komsomolets made an emergency surfacing. At surface the commanding officer made emergency signals to the Northern fleets head command in Severomorsk. The fire onboard had caused short circuits in the electrical system and the nuclear reactor triggered its emergency systems and was shut-down. The fire spread to other compartments and attempts to extinguish the flames by the crew were unsuccessful. The submarine lost power and ran out of compressed air necessary to keep the submarine floating. At 17:00, Komsomolets lost buoyancy and stability. The crew began to lower the life rafts. But there were not enough rafts, and the rafts within reach didn’t float properly. At 17:08 Komsomolets sank. In the following hour 42 submariners lost their life in the cold sea. The crew of a Norwegian surveillance Orion aircraft circling over witnessed the tragedy happening. Just after 18:00 the first vessels arrived. The survivors were taken aboard the Soviet trawler Oma and the cargo vessel Aleksandr Khlobystsov. By then the evacuated crew had been in frigid seawater for more than one hour. The freezing survivors and the bodies of the victims were taken to Severomorsk on the Kola peninsula aboard the nuclear-powered cruiser Kirov. 25 of the 67 crew members from Komsomolets survived. The submarine, with its nuclear reactor and two nuclear-tipped torpedoes, remains at the seabed at a depth of 1685 meters. Compounding the tragedy, the crew's families did not receive notice of any deaths until April 10th, three days after the accident. In another comment on the times, Northern Fleet commanders never asked Norwegain authorities for rescue assistance. The Cold War had not yet thawed. The reason why Komsomolets sank following the fire may never be clear. Two investigations, one by a USSR state commission and another conducted independently, failed to furnish evidence sufficient enough to explain why the accident occurred and why it was so costly. Survivors and the still-mourning families are still without the answers that might at least bring understanding. The USSR state commission concluded that no one was to blame for the submarine's sinking. But the independent commission suggested there was reason to believe that Komsomolets had several construction flaws. Others claim the crew was insufficiently trained to operate the advanced submarine. On the 10 year's anniversary in April 1999, the Murmansk daily Polyarnaya Pravda used their editorial space to conclude the truth will forever be buried in the seabed off Norway's continental shelf. Today, 20 years after, at least Norway and Russia have a friendly relation and can cooperate together on possible future rescue operations in the north.

Pedal-Boat Submarine.

A team of engineers plan to venture where no man has gone before after unveiling a pedal-boat submarine on the French Riviera. Nicknamed "the Scubster", the 3.5 metre-long one-man yellow submarine has echoes of the fancy gadgets from fictional spy James Bond.
Powered by twin propellers connected to a pedal belt, the mini-sub can reach speeds of 8 km an hour (5 mph) if its pilot is in good shape, and can reach depths of 6 metres (20 ft). "I've been up in the air by pedalling, underwater with my bike and now underwater with a submarine," Stephane Rousson, the man behind the invention, told Reuters. The vessel managed an hour under water in the Mediterranean waters off the Cote d'Azur this week and is entirely controlled by hand or pedal. Hermetically sealed, the passenger breathes with a mask and a bottle of oxygen. Whether it will have commercial success remains to be seen, but Rousson believes it may capture the attention of an emerging high-end market of yacht owners with "pocket submarines". "And if it doesn't take off, I'll race it," said the 40-year old from Nice, who plans to take part in the 2011 International submarine race in the United States.


Historic Submarine goes to a New Museum.

The submarine Lembit was hauled to dry land on special air cushions in one of the most complicated water engineering operations ever to be carried out in Estonia. Preparations for the opening of North Europe’s biggest new maritime museum are well underway in Estonia with the world’s oldest in the water submarine having been lifted to land. The legendary Estonian submarine Lembit was hauled from the water at its home port in Tallinn as it is prepared to become the centrepiece at the new maritime museum at the Seaplane Harbour (Lennusadam). The unique museum will be opened at the former seaplane hangars in 2012. Lembit is the only warship in Estonia’s pre-war fleet to survive intact. It is the crown jewel of Estonia’s military history, being in excellent condition and offering a glimpse of state of the art technology in the 1930s. Having made its maiden voyage almost 75 years ago, Lembit was hauled to dry land on special air cushions in one of the most complicated water engineering operations ever to be carried out in Estonia. Once on land, the submarine’s interior is being thoroughly restored to give visitors an opportunity to see the submarine as it was in its heyday. Estonia’s two identical submarines, Lembit and Kalev, were built at the British Vickers-Armstrongs shipyards in Barrow-in-Furness and made their maiden voyage on 7 July 1936. The ships reached Estonia in the summer of 1937 after thorough trials at sea and the training of the crew. After the Soviet Union’s occupation of Estonia on 6 August 1940, the red communist flag was raised on the ships of the Estonian Navy and the crews and officers were replaced by Russians. Lembit was part of the Soviet Union’s Baltic Fleet during the Second World War. After the war, the vessel survived thanks to its state of the art technology and the Soviet Army’s keen interest to investigate the British engineering solutions of the time. The submarine fell into disappear until war veterans who had served on the ship during the war came across it docked on the River Volga in the 1970s. After lengthy and often contentious negotiations, Lembit was brought back to its hometown in 1979, becoming part of the Baltic Red Fleet Museum. It was opened to the public in 1981. In April 1992, after a campaign by the defence forces and naval veterans, the Estonian Maritime Museum took control of the ship. On 2 August 1994, the ensign of the Estonian Navy was raised on the submarine and it became ship Number 1 of the reinstated Estonian Navy. When it opens next year, The Seaplane Harbour will become a home not only to the Lembit but also to an impressive three level permanent exhibition which includes the best of Estonian historic maritime technology and wartime weapons. The seaplane hangars, which were built between 1916 and 1917 as part of the Peter the Great’s Naval Fortress, are currently under reconstruction and are expected to be finished next year. The complex of seaplane hangars at the Seaplane Harbour is included in the Estonian architectural heritage list as one of the first shell concrete structures in the world. When finished, the Seaplane Harbour will be a rare combination of objects, the architecturally unique hangars, a maritime museum, and a functioning harbour.


Growth forecast in submarine market.

Forecast International’s ‘The Market for Submarines’ analysis projects that 111 submarines worth $106.7 billion will be produced from 2011-2020. The average value of these submarines will be $960 million, an indicator of the growing complexity of the modern submarine and the increasing use of air-independent propulsion, both of which add substantially to the cost of diesel-electric boats. The submarine market is divided into three sub-sectors. The first is the market for ballistic missile submarines, or SS BILLIONs. There are 13 such submarines on order or under construction. These represent 11.7 per cent of the total market in terms of numbers but are valued at $26 billion, representing 24.5 per cent of the total value of the market. The average unit cost of the SS BILLIONs is $2 billion. The second sector is the market for nuclear-powered attack submarines, or SSNs. The projections show sales of 27 such submarines, representing 24 per cent of the total number and valued at $48.32 billion. The final sector is the market for SSKs, or diesel-electric submarines. From 2011-2020, 71 of these boats will be built, representing 64 per cent of the total. They are valued at $32.4 billion, representing 30.36 per cent of the total expenditure on submarines from 2011-2020. A notable factor this year is that the average cost of diesel-electric submarines has increased to $456 million. Defence minister Stephen Smith has dismissed arguments by several analysts and affirmed the government’s commitment to the assembly of 12 submarines in South Australia.


Greek ex-minister linked to bribery case.

German prosecutors are targeting a former Greek defense minister in a corruption investigation involving the sale of four German Type 214 submarines to Greece. Prosecutors in Munich claim that Akis Tsohatzopoulos, the Greek defense minister from 1996-2000 accepted bribes in a deal involving four submarines built by German company Ferrostaal, the weekly news magazine Der Spiegel reports. Tsohatzopoulos strongly denied the allegations. "I have never asked for or received money or other advantages in connection with the sale of submarines to Greece," he told Der Spiegel. The Munich prosecutors have named Tsohatzopoulos in connection with proceedings they launched against two former Ferrostaal top managers. The corruption case affects hundreds of millions of dollars in kickbacks to win contracts in Greece and Turkmenistan. The Ferrostaal deal for the subs, built by Howaldtswerke-Deutsche Werft, was secured after kickback payments to several government and military officials, with a significant sum also ending up in the hands of Tsohatzopoulos, Der Spiegel cites the prosecution's charge sheet as saying. Tsohatzopoulos has been a subject of unrelated corruption inquiries in Greece. The country's current defense minister, Evangelos Venizelos, last month accused German companies including Siemens, Ferrostaal and its former parent MAN as encouraging corruption. It would be naive to believe that German arms sales are free from bribery, an expert familiar with the industry said last year. "It's not unusual that major export deals are linked to bribery payments and that's true for the arms industry as it is for most big export industries," said Otfried Nassauer, director of the Berlin Information Center for Trans-Atlantic Security, a security think tank. "If a submarine costs 500 million euros ($725 million), then it's easy to hide a few millions here and there." There are rumors that German companies sold submarine technology to South Africa when it was still under an embargo. It is also alleged that senior managers of German and French companies received bribery payments for arms deals with South Africa. Germany is one of the world's major arms exporters. According to the Stockholm International Peace Research Institute, the country is No. 3 in the global market, trumped only by Russia and the United States. Companies including ThyssenKrupp Marine Systems, Rheinmetall and Krauss-Maffei Wegmann develop high-quality submarines, ships, armored vehicles and tanks. And European Aeronautic Defense and Space Co., a multinational giant producing several models of airplanes and helicopters, has a strong German profile.


China Tweaks Russian Designs.

China recently launched a new diesel-electric submarine. There was no official information released, but based on photos available it appears to be another development in China's taking Russian submarine technology and adapting it for Chinese designs. China has been doing this for as long as it has been building subs (since the 1960s). But this latest version of what appears to be the Type 41 design, shows Chinese naval engineers getting more creative. The Type 41A, or Yuan class , looks just like the Russian Kilo class. In the late 1990s, the Chinese began ordering Russian Kilo class subs, then one of the latest diesel-electric design available. Russia was selling new Kilos for about $200 million each, which is about half the price other Western nations sell similar boats for. The Kilos weigh 2,300 tons (surface displacement), have six torpedo tubes and a crew of 57. They are quiet, and can travel about 700 kilometers under water at a quiet speed of about five kilometers an hour. Kilos carry 18 torpedoes or SS-N-27 anti-ship missiles (with a range of 300 kilometers and launched underwater from the torpedo tubes.) The combination of quietness and cruise missiles makes Kilo very dangerous to American carriers. North Korea and Iran have also bought Kilos. The Chinese have already built three Yuans, the second one an improvement on the first. These two boats have been at sea to try out the technology that was pilfered from the Russians. The third Yuan is the one just launched, and appears to be a bit different from the first two. The first Yuan appeared to be a copy of the early model Kilo (the model 877), while the second Yuan (referred to as a Type 41B) appeared to copy the late Kilos (model 636). The third Yuan may end up being a further evolution, or Type 41C. This one also appears similar to the Russian successor to the Kilo, the Lada . The first Lada underwent three years of sea trials before they were declared fit for service last year. Another is under construction and eight are planned. The Kilo class boats entered service in the early 1980s. Russia only bought 24 of them, but exported over 30. It was considered a successful design. But just before the Cold War ended in 1991, the Soviet Navy began work on the Lada. This project was stalled during most of the 1990s by a lack of money. The Ladas are designed to be fast attack and scouting boats. They are intended for anti-surface and anti-submarine operations as well as naval reconnaissance. These boats are said to be eight times quieter than the Kilos. This was accomplished by using anechoic (sound absorbing) tile coatings on the exterior, and a very quiet (skewed) propeller. All interior machinery was designed with silence in mind. The sensors include active and passive sonars, including towed passive sonar. The Ladas have six 533mm torpedo tubes, with 18 torpedoes and/or missiles carried. The Lada has a surface displacement of 1,750 tons, are 220 feet long and carry a crew of 38. Each crewmember has their own cabin (very small for the junior crew, but still, a big morale boost). When submerged, the submarine can cruise at a top speed of about 39 kilometers an hour (half that on the surface) and can dive to about 800 feet. The Lada can stay at sea for as long as 50 days, and the sub can travel as much as 10,000 kilometers using its diesel engine (underwater, via the snorkel). Submerged, using battery power, the Lada can travel about 450 kilometers. There is also an electronic periscope (which goes to the surface via a cable), that includes a night vision capability and a laser range finder. The Lada was designed to accept a AIP (air independent propulsion) system. Russia was long a pioneer in AIP design, but in the last decade, Western European nations have taken the lead. Construction on the first Lada began in 1997, but money shortages delayed work for years. The first Lada boat was finally completed in 2005. A less complex version, called the Amur, is being offered for export. The new Chinese Yuan class boat is larger than the Kilos or Ladas, but has similar external design features. It will be a while before more details can be uncovered. Preceding the Yuans was the Type 39, or Song class. This was the first Chinese sub to have the teardrop shaped hull, and was based on the predecessor of the Kilo, the Romeo class. The Type 41A was thought to be just an improved Song, but on closer examination, especially by the Russians, it looked like a clone of the Kilos. The Yuan class also have AIP (Air Independent Propulsion), which allows non-nuclear boats to stay underwater for days at a time. China currently has 13 Song class, 12 Kilo class, three Yuan class and 25 Romeo class boats. There are only three Han class SSNs, as the Chinese are still having a lot of problems with nuclear power in subs. Despite that, the Hans are going to sea, even though they are noisy and easily detected by Western sensors.


HMS Ambush.

New killer submarine British Navy. Although it’s 50% larger than the Swiftsure and Trafalgar submarines, Ambush can move more quietly, even better than a baby dolphin. Silence makes the boat virtually undetectable by enemy’s ships. Ambush’s sonar and radar systems are very sensitive so that it can detect ships that are 3 thousand miles away. This means that when Ambush in the English Channel, it can know if there are ships that leave the port of New York. Ships worth 1.2 billion pounds ($ 16.8 trillion) will be launched at Barrow-in-Furness, Cumbria, England. However, the head of the British Navy still experiencing nervous because it expects new products do not experience the same fate as its predecessor, HMS Astute. Captain of HMS Astute, Commander Andy Coles was released after HMS Astute submarine ran aground on the Isle of Skye, last October. HMS Ambush will carry 38 missiles, a mix of Tomahawk cruise missile has a range of 1240 miles and Spearfish heavyweight torpedo that could destroy other submarines. BAE Systems is building seven submarines Asute. The submarine was able to turn sea water into oxygen and fresh water so as to maintain its 98 crew still alive. In addition, these submarines also nearly silent so not easy to detect the enemy. These submarines do not need refueling and can attack using missiles as far as 1,000 miles (1609 kilometers). The greatest, the submarine’s mission is usually only 10 weeks, but in theory these submarines can stay underwater without needing to surface in her life, 25 years old. Ambush will be officially launched and named by Lady Anne Soar, wife of Chief Commander of the Navy Sir Trevor Soar. Furthermore, the submarine-sized 7400 metric tons of this will be tested.


DCNS new Submarine Projects.

DCNS has unveiled some new interesting projects the "SMX-25" light submarine 109 meters submarine, 2850 tons conceived to operate in short depth (100m max.), would have a speed of only 10 knts in depth but 38 knts at surface. Fitted out with some torpedoes but mainly anti-ship missiles, and unnamed helicopters.


DCNS begins work on four Brazilian conventional submarines.

French naval manufacturer DCNS has begun with the work on the first conventional attack submarine for the Brazilian Navy by celebrating the first steel cut at a ceremony at the company Cherbourg centre. In an effort to modernise the South American country submarine fleet, DCNS had been awarded a major contracts package by the Brazilian Navy back in December 2008 for the design and construction of four conventional-propulsion submarines under a technology transfer agreement, the technical assistance for the design and construction of the non-nuclear part of the first Brazilian nuclear-powered submarine, and the support services for the construction of a naval base and a shipyard in Itaguai (Rio de Janeiro state). The order is DCNS biggest contract ever for an international customer and will be performed by a Joint Venture, established in co-operation with the French company Brazilian partner Odebrecht. Based upon the Scorpene-class submarines and incorporating the specific requirements of the Brazilian Navy, the submarines will represent a new, enlarged class, named SSK. The first boat of this new class is scheduled to enter active service in 2017. All four submarines use conventional or diesel-electric propulsion and will be manned by a crew of between 30 and 45 submariners. For a length overall of 75 meters the design offers a surface displacement of less than 2,000 tons. Pierre Quinchon, head of DCNS's Submarine division said on the occasion of the steel-cut ceremony in Cherbourg, where the forward part of the boat will be built: This programme confirms the Group expertise in setting up innovative partnerships based on well-managed technology transfers in favour of international client navies. We are proud to offer Brazil the opportunity to acquire advanced naval technologies. The design and construction of these submarines represent a significant workload for both DCNS and the Brazilian naval shipbuilding industry, beginning with our benchmark partner Odebrecht. With a contract value of $9.3 billion for the entire naval contracts package, reportedly clinched at the President level between Nicolas Sarkozy and Ignacio Lula da Silva and largely financed by loans totalling â‚6.1 billion extended by a pool of French banks, it gives DCNS a significant stand in South America. DCNS will act as prime contractor for the four conventional-propulsion submarines to be built by the Joint Venture. In the further process of the co-operation, DCNS will provide design assistance under the Brazilian Navys design authority - for the non-nuclear part of the Navys first nuclear submarine which will equally be built by the Joint Venture. The entire nuclear power plant will be designed and built in Brazil, based upon an $880 million investment programme. The first steel cut marks the start of the industrial production phase of the programme. It will be followed by the arrival of some 130 Brazilian engineers and technicians that will participate in the technology transfer programme for the construction of those submarines in Brazil.


Accidents Involving Nuclear Weapons 1950-1993.

This is a list of accidents involving nuclear weapons, on submarines from 1950 to 1993, and was originally published on the Greenpeace Web site. The accidents listed below involving U.S., Soviet, and Russian nuclear weapons or nuclear- armed ships and submarines are some of the more serious nuclear accidents to befall U.S. and Soviet nuclear forces. As a result of accidents, some 51 nuclear warheads were lost into sea (44 Soviet and 7 U.S - although at least one Soviet warhead was recovered). Also, seven nuclear reactors (5 Soviet and 2 U.S.) from three Soviet and two U.S. nuclear-powered submarines have been lost at sea due to accidents. Another 19 nuclear reactors from nuclear-powered vessels have been deliberately dumped at sea (18 Soviet and 1 U.S.). The U.S. Navy is known to have experienced at least 380 nuclear weapons incidents, but the details are not known. It assumed that other countries with nuclear weapons have had similar nuclear weapons accidents or incidents, but official secrecy means that no information is available. The nuclear nations' operational arsenals contain over 21,000 nuclear weapons. Their militaries still retain hundreds of nuclear-armed launchers and nuclear-capable military units. The threat of a serious nuclear weapons accident has not disappeared with the end of the Cold War. This is particularly the case where the arms race remains the most active: at sea where nuclear-armed and nuclear-powered ballistic missile submarines still go on regular patrols at levels that have not changed much if at all from the height of the Cold War. If history is a guide, nuclear weapons safety probably has been a problem for the non-declared nuclear powers like India and Israel and for other countries that have had or do have incipient nuclear weapons programs. The experience of the U.S. and the Soviet Union suggests not only are nuclear arsenals extraordinarily expensive but they also come with serious safety, health, and environmental costs.

8-10 March 1968: The K-219, a Soviet Golf II class (Project 629M) diesel-powered ballistic missile submarine armed with three nuclear SS-N-5 missiles, sank in the Pacific, about 750 miles northwest of the Island of Oahu, Hawaii. The submarine possibly also carried two nuclear torpedoes.

27 May 1968: The U.S. nuclear-powered submarine USS Scorpion (SSN-589) sank about 400 miles southwest of the Azores, killing all 99 men on board. The submarine was powered by one nuclear reactor and carried two nuclear-armed ASTOR torpedoes.

12 April 1970: The K-8, a Soviet November class (Project 627A) nuclear-powered attack submarine, sank in the Atlantic Ocean 300 miles northwest of Spain. The submarine was powered by two nuclear reactors and carried two nuclear torpedoes.

29 November 1970: A fire broke out in the stern of the U.S. Navy submarine tender USS Canopus (AS-34) while it was at the Holy Loch submarine base in Scotland. The tender carried several nuclear-armed missiles and two U.S. nuclear-powered ballistic missile submarines were moored alongside. It took four hours to bring the fire under control and three men were killed.

8 September 1977: The K-171, a Soviet Delta I (Project 667B) nuclear-powered ballistic missile submarine, accidently jettisoned a nuclear warhead near Kamchatka in the Pacific Ocean after a build-up of pressure in a missile launch tube. After a search, the warhead was recovered.

9 April 1981: The U.S. nuclear-powered ballistic missile submarine USS George Washington (SSBN-598) collided with a Japanese freighter in the East China Sea. The freighter sank and the submarine suffered slight damage to its sail. The submarine probably carried a total of 160 nuclear warheads on its 16 Poseidon C3 missiles.

6 October 1986: The K-219, a Soviet Yankee class (Project 667A) nuclear-powered ballistic missile submarine armed with 16 SS-N-6 missiles (two warheads each) and probably also two nuclear torpedoes, sank 600 miles northeast of Bermuda. It was powered by two nuclear reactors and 34 nuclear warheads were estimated to be on board.

7 April 1989: The K-278 Komsomolets, the Soviet Mike class (Project 685) nuclear-powered attack submarine, sank off northern Norway following on board fires and explosions. The submarine was powered by one nuclear reactor and carried two nuclear torpedoes.

27 September 1991: A missile misfired aboard a Soviet Typhoon class (Project 941) nuclear-powered ballistic missile submarine in the White Sea during a training exercise. Fortunately, the submarine was able to return to base, but the accident could have sunk the submarine, along with its two nuclear reactors and nuclear-armed missiles and torpedoes.

20 March 1993: A Russian Delta III class (Project 667BDR) nuclear-powered ballistic missile submarine is struck by the U.S. nuclear-powered attack submarine USS Grayling (SSN-646) while operating in the Barents Sea close to the Kola Peninsula. The submarine suffered slight damage and was able to return to base, but the collision could have sunk the Delta submarine including its 16 SS-N-18 nuclear armed missiles.

Kockums to Design Sweden‘s Next-Generation Submarine.

Sweden‘s A26 Submarine Programme to Enter Next Phase after Government Approval. The country’s Defence Materiel Administration (Försvarets materielverk, FMV) awarded Kockums AB, a 100% subsidiary of ThyssenKrupp Marine Systems, with a contract for the overall design of Sweden’s next-generation submarine. This decision is considered to confirm the government’s intention to further develop Sweden’s submarine capability, after the programme was delayed and failed to be carried out as a multi-national Scandinavian procurement programme, as it was planned earlier. Initiation of the design phase for the submarines, designated A26, was already approved by the Swedish government in December 2007. Several years ago, Sweden was involved in talks with Norway and Denmark, within the framework of the so-called “Viking” project, to build a tri-national next-generation submarine. However, after Denmark decided not to operate any submarines in the future, Norway also left the project and it was continued as a national programme. Nevertheless, Norway has shown continued interest and is examining a possible future purchase of the submarine. For the time being, this remains a national programme, which so far is intended to provide two submarines for the Swedish Navy, as confirmed Ulf Lindström, Press Relations Manager at the FMV. However, the final number of next-generation submarines to be procured has not yet been decided by the government. Commenting the order for the overall design Kockums CEO Ola Alfredsson said: “This is an important first step, not only for Kockums, but for the Swedish Armed Forces as a whole. We shall now be able to maintain our position at the cutting edge of submarine technology, which is vital in the light of current threat scenarios. HMS Gotland demonstrated what she is capable of during two years [June 2005 - July 2007] of joint exercises in the water off the USA. This next-generation submarine marks a further refinement of technology.” According to Kockums, the naval capabilities of the new generation will focus on littoral operations, however, without abandoning the significant ocean-going capabilities. It will be powered by a conventional diesel-electric propulsion machinery and will be equipped with Kockums Stirling AIP system (air-independent propulsion). The latter have already been successfully operated with the Gotland-class submarines and made them most interesting to the US Navy which leased a Gotland-class vessel for naval exercise purposes. The Sterling AIP system, combined with a set of balanced underwater signature properties, makes the submarine very difficult to detect and allows it to stay submerged for weeks. Furthermore, Kockums will also attempt to create a design highly invulnerable to underwater explosions through a verified shock resistance.
Ulf Lindström further commented on the capabilities of Sweden’s future submarines: “The submarine will, among other new features, be equipped to support Special Forces operations as well as future use of autonomous or remotely controlled underwater vehicles.” The submarine, which is intended to provide a high degree of modularity “is also optimised for efficient production using large resiliently mounted platforms and a highly modular interior,” explained Lindström. A key element in the future operations of the submarines will be information gathering, as Senior Vice President PR & Communications at Kockums, Kjell Göthe, told The combination of sensors and noiseless propulsion is to enable the submarine to see and hear everything over a wide area while remaining undetected. As Mr Göthe said, the recently awarded design contract, which will be carried out during the next two years, is an important success for Kockums and supports the further sustainment and development of Swedish expertise and know-how in the field of naval development and construction. The government is scheduled to take a decision on the building phase in spring 2010 and is aiming at 2017 for the launch of the first vessel. Key data of the next-generation submarine (A26):

• Length: 63m (ca.)
• Pressure hull diameter: 6,4m (ca.)
• Two pressure tight compartments
• Displacement:
- Surfaced:1,700 m³ (ca.)
- Submerged: 1,860 m³ (ca.)
• DE-Gensets: 3 x 500 kW
• Stirling AIP system Mk III: 3 x 65 kW
• Crew size (mission dependent): 17-28

Submarine to join Bangladesh Navy by 2019.

The Bangladesh Navy will have its first submarine by 2019, Prime Minister Sheikh Hasina said, adding Dhaka wants to amicably resolve its maritime boundary issue with neighbours India and Myanmar as it does not want a war in the region.


Submarines for Sale.

Bulletin 24 described the newest and most modern of submarine designs, the German-built model 212. These are automated and carry the best in fire-control, weapons and propulsion. They are priced at between 1.5 and 2 billion dollars a copy. This puts them beyond the pockets of most Americans. But if you really want to buy a submarine where the price is right look to Russia. You need not deal with old Whiskey class boats that are antiquated. Modern Tango class boats are for sale for as little as five million dollars. True, this exceeds most submariners' financial assets, but entrepreneurs looking for an investment may be attracted. You would have to get them while they're hot, since only four are left. The Tangos were built during the 1970s and were the last of the diesel-electric powered boats. Each boat class is designated with a project number so that one can know in which shipyard the submarine was constructed. For example the four that are still for sale are from the 641B project. This means that they were built in Gdansk, Poland under Russian license and that they are of the second modified series. Each boat comes with three original, 1,350 shp engines which drive a single middle shaft for a surface speed of 13 knots. With four batteries and improved cells the boat can reach speeds of 15 knots submerged using two low speed, 1,800 shp motors on dedicated outboard shafts. The boat has a pressure hull to take her to a test depth of 732 feet. These are not large boats by American standards; being only 275 feet with a beam of 27 feet. It normally takes a crew of 78 for operations but can get by with only 21. Its bow has been modified to accommodate a passive sonar array equivalent to the BQR-2B. You get everything for your purchase price, however, the Russian government doesn't guarantee that anything will work. As a matter of fact, the four remaining boats can best be described as marginally sea worthy. The last Tango to be sold went to Yuri Luzhkov who has made the boat ready for the public by refurbishing the interior. He then towed the boat from its dock in Severodvinsk up several rivers to Moscow where it had access ports cut into its hull at the bow and stern for public entry. It was docked at the Moscow River Quay adjacent to the Moscow Central Park of Culture and Rest where for a nominal fee one can visit this rather modern museum piece. Luzhkov expects the display to pay his money back in about two years. This is not the first Tango class boat to be used as a tourist attraction. In Hamburg, Germany a Tango 641B has been named the U-434 and is a big hit with visitors to the gray city. Although the actual U-434 was sunk on its first patrol in the North Sea in 1941 and the Russian boat has no resemblance to the real U-434 the public doesn't seem to mind. To most folks all submarines are pretty much alike. The boat has long since paid for itself and is making its investors a tidy profit.

Turkish Defence .

Turkey signs credit deal for six submarines U-214TN class submarines of the Turkish Navy will feature air independent propulsion technology and indigenously developed advanced subsystems. A credit agreements were signed for six submarines to be manufactured by naval shipyards in Turkey with assistance from Germany. Turkish Treasury said in a statement on Friday that it signed a credit agreement of $2.18 billion euro with the banks consortium led by Bayerische Landesbank. The credit will be used to finance manufacturing of six AIP (air-indepent propulsion) technology U-214TN submarines in Turkey. Submarines will be heavily modified as to meet Turkish Navy’s highly specific tactical and technological requirement.


Ferrostaal Discusses Settlement With Prosecutors.

Ferrostaal AG may pay 177 million euros ($250 million) to settle allegations that managers paid bribes to get a 1.6 billion-euro order for submarines in 2000, Der Spiegel reported, citing negotiations between court officials, prosecutors and defendants. Under an agreement that hasn’t yet been completed, two former managers would get two-year suspended sentences and be ordered to pay fines, the magazine said. Maria Lahaye-Geusen, a Ferrostaal spokeswoman, declined to comment; Barbara Stockinger, a spokeswoman for Munich prosecutors, wasn’t immediately available to comment. Munich prosecutors said in April that a former member of Ferrostaal’s management board and a former manager were charged with paying bribes totaling more than 62 million euros between 2000 and 2007 to win submarine orders from Greece and Portugal. Ferrostaal, based in Essen, Germany, has been under investigation since 2009. In April, the prosecutors said talks with the company to settle the matter had failed.


Ferrostaal Internal Probe Finds ‘Questionable’ Payments.

An internal investigation of Germany’s Ferrostaal AG found evidence of “questionable or improper” payments all over the world, though they weren’t “systematic.” A partial copy of the report (pdf), conducted by Debevoise & Plimpton LLP and dated April 13, 2011, was posted anonymously on Thursday to the website It reviewed payments made between 1999 and 2010, and was stamped “privileged and confidential” and “attorney-work product.” “Questionable or improper payments do not appear to be systematic,” the report said, “in that they were not centrally coordinated or controlled but rather the result of various schemes operating independent of each other.” Maria Lahaye-Geusen, a company spokeswoman, said in an interview with Corruption Currents: “There have been intensive investigations concerning several compliance issues in the past at Ferrostaal with the help of Debevoise & Plimpton.” She added that “The Debevoise & Plimpton report is a confidential one.” Debevoise declined to comment on the report. Ferrostaal has been embroiled in a bribery scandal for months. Just days before the stamped date on the Debevoise & Plimpton report, two Ferrostaal executives were charged by Munich prosecutors with bribing foreign officials with more than EUR62 million between 2000 and 2007, relating to submarine sales to Freece and Portugal. Two weeks ago, Greek authorities charged 29 people, though the suspects weren’t identified. Debevoise & Plimpton looked at about EUR1.2 billion in payments over the 11-year period, finding that just less than EUR9 million showed “clear evidence of corrupt conduct.” However, EUR81 million “gave rise to grounded suspicions of corrupt or other criminal conduct,” and EUR246 million “presented serious compliance issues and significant red flags.” The scandal is also holding up the sale of a minority stake in the company. Abu Dhabi’s International Petroleum Investment Co. bought a 70% stake in the company from MAN SE, a German truck maker, in 2009. However, the co-shareholders have yet to settle a deal for the remaining 30%, as was agreed; it hinges in part on resolving the bribery allegations that date back to when Ferrostaal was owned by MAN. Debevoise and Plimpton, in its report, criticizes the company’s compliance measures. “Ferrostaal’s systems and controls were inadequate to address the risk profile of its business and failed to prevent or detect potential compliance violations…The anti-corruption measures and controls that existed were not meaningfully implemented or enforced and were easily circumvented in several instances,” the section “Systems and Controls” said. “The fact is that Ferrostaal established last year a compliance system throughout the company that ensures only clean business is Ferrostaal business,” said Lahaye-Geusen. Half of the nearly 200-page report was posted on WikiGreeks, and it was previously covered by Just Anti-Corruption (sub req). A detailed table explaining the “workstream” of the payments is in an annex, the report said, though it appears in the part of the report not posted on the website. The law firm found evidence of suspicious payments in Greece, Portugal and South Africa in connection with sales of submarines to those countries. The internal investigation also looked at the sales of a subsidiary in Korea, Turkey, Pakistan, Italy, Indonesia and Egypt. The report said senior management not only failed its duty to create adequate controls but was “instrumental in fostering an ethos where compliance violations could be committed and go undetected and/or unremedied.” “While paying lip service to the law, the [board's] actions fostered a climate where willful blindness became an acceptable mode of operating,” the report said.


Families of Frenchmen killed in Pakistan attack sue judge.

Relatives of Frenchmen killed in a 2002 bombing in Pakistan are suing a judge who probed the case, their lawyer said Wednesday, alleging it was falsely framed as a suicide attack. They lodged a complaint alleging that the judge, Jean-Louis Bruguiere, had ignored an autopsy on the suspected bomber which they say cast doubt on claims that he drove a vehicle packed with explosives, said the lawyer, Olivier Morice. “All these years, real disinformation has been orchestrated in order to make people believe that this attack was carried out as a suicide bombing,” he said. The ongoing probe, now under the supervision of a different judge, centres on allegations that the attack was revenge for the cancellation of kickbacks promised to officials involved in the sale of French submarines to Pakistan. The bombing in Karachi in 2002 killed 11 French engineers working for the French state company that built the submarines and at least three Pakistanis. The complex case has implicated President Nicolas Sarkozy, who was budget minister at the time. He has denied any involvement. The victims’ families have accused officials of trying to bury the affair. Their latest suit accuses Bruguiere, who led the French judicial investigation into the bombing from 2002 to 2007, of false testimony and obstructing justice. They have already brought a manslaughter suit against former president Jacques Chirac, former prime minister Dominique de Villepin and executives involved in the arms deals, and have called for Sarkozy to be questioned. Judges have also been investigating whether money paid in commissions ended up being channelled to fund political activities in France. Witnesses have told investigators Sarkozy approved the commissions as budget minister at the time. Sarkozy has dismissed the claims as a “fairytale.”


Baldoasat Submarine.

Russia has developed a small submarine for private use, is the first of its kind which is . being operated Caldrajp using the pedals, and two persons can generate the energy needed to run till the water without the need for special training to use them, not to exceed the speed of speed of walking. The company said that, contrary to conventional submarines, a water vehicle design simple, the most part, made of acrylic glass sector, as well as Dostin and the steering wheel, the operation and control with few buttons, also provided the automatic safety system for floating on the surface of water in case of emergency . The company designed, called "Marine Iinouphoutv Technology", that the submarine will allow its user to enjoy with a great under water, especially since the vehicle capable of diving to a depth of 30 meters, and has a great ability to maneuver and turn around the vertical axis. The length of the submarine 11 feet and display more than six feet, and is expected to be priced about 70 thousand dollars, according to a newspaper "Telegraph" British.
The manufacturer of the submarine is the first of its kind to be powered by using the pedals, and taking advantage of a phenomenon called the Coanda effect, which enables two people to generate sufficient momentum, in addition to the ability of the submarine to reach to a distance of 37 thousand feet below the surface of the water, and speeds up to 400 feet per minute.


India to get additional Scorpene Submarines.

The cost increase is the result of initial teething problems, absorption of technology, and augmentation of infrastructure and procurement materials in the Mazagon Dock Ltd. The last of the six submarines will now be delivered in the second half of 2018. India's Defence Acquisitions Council approves $11bn for six new submarines, which is to provide the Navy with six next generation diesel-electric submarines. For this purpose, the Defence Acquisition Council (DAC), chaired by Defence Minister A K Antony, recently approved the allocation of Rs 50,000 crore, equalling $11 billion. While according to the DAC, three of the six submarines will be constructed at the Mazagon Docks (MDL) in Mumbai and one at Hindustan Shipyard Ltd (HSL) in Visakhapatnam, the Times of India reported yesterday that the two remaining submarines will either be imported or constructed at a private shipyard in India. All work is to be assisted by a foreign collaborator. While no specific timeline for the programme has been revealed, the programme will be subject to a certain time pressure, as it is estimated that in 2015 the Navy will only be able to operate half of its current fleet of 15 ageing diesel-electric submarines. An Indian official told the Times of India that he hopes the navy will receive its first submarine under P-75I in six to seven years. In light of an almost three-year delay and increasing costs in the ongoing Project-75 for six French Scorpene-class submarines to be constructed at the MDL shipyard, it remains to be seen if this is an ambitious schedule. The next step will be to issue a RfP (request for proposal) in order to select a foreign partner. Major international export agencies and naval shipyards, probably including Rosoboronexport (Russia), DCNS/Amaris (France), HDW (Germany) and Navantia (Spain), are likely to spring into action as soon as the framework for P-75I is known. India’s next-generation conventionally powered submarines are planned to feature improved stealthy and land-attack capabilities. This will include the integration of an air-independent propulsion (AIP) system, allowing submarines to remain submerged for very long periods. Conventional submarines without an AIP system have to surface regularly in order to refresh the oxygen in the submarine and to recharge their batteries. In parallel to sustaining an adequate fleet of conventionally powered submarines, India is continuing its efforts to introduce its first nuclear-powered submarine. The Russian-built Akula-II class attack submarine, dubbed K-152 Nerpa, will be leased for ten years beginning in October and the indigenously developed and constructed INS Arihant is scheduled to enter service by early 2012.


Plans to Rebuild Subs For Cargo Transport.

Plans to use Typhoon submarines for under-ice deliveries of oil and ore in Arctic waters is inexpedient, says the designer of the world’s largest ever built submarine. Ideas to refit two of Russia’s huge nuclear powered submarines to carry ore were earlier discussed between Rubin Central Design Bureau and metallurgical giant Norilsk-Nickel. The designers also said it could be possible to replace the 20 intercontinental nuclear missiles with tanks to carry oil from re-loading terminals under the ice in the Arctic. With the missile launchers removed, the projected cargo capacity could be 15,000 tonnes. Their use for civilian purposes is inexpedient, said Andrei Diachkov, director general of Rubin at a press conference before Christmas, reports RusNavy, a portal that monitors Russian navy developments. The Russian navy has three remaining submarines of the Typhoon-class. One, the thirty-year old "Dmitri Donskoy" is used as a test-launch platform for the new Bulava missile. The two others, "Severstal" and "Arkhangelsk" are in reserve and their missiles are removed. BarentsObserver reported last year that "Severstal" and "Arkhangelsk" could get overhaul and by that stay in service until 2019. The 175 meter (574 feet) long and 24,000 tons heavy submarine is the largest nuclear powered submarine ever built. During the Cold War the six Typhoon-class submarines were based at the naval base in Zapadnaya Litsa on the Kola Peninsula, only some 50 kilometers from the border to Norway.


NATO Submarine Rescue Exercise.

A demonstration of submarine rescue operations, in the framework of Exercise Bold Monarch 2011, took place on Friday at the presence of Admiral Giampaolo di Paola, Chairman of NATO’s Military Committee (CMC), Gen Nikolay Makarov, Chief of Joint Staff of Russian Federation Armed Forces and Admiral General Manuel Rebollo Garcia, Chief of the Spanish Navy, along with other NATO Officials. The exercise Bold Monarch is the world’s largest event of this kind, bringing together every three years submarines, ships and aircraft from both NATO and non-NATO countries. The 2011 edition includes the participation of Russia, marking it as the first time a Russian submarine participates in any NATO exercise. Bold Monarch 2011 is designed to maximize international cooperation in submarine rescue operations – a critical capability for NATO and for all the submarine-operating nations. During the 12-day exercise, submarines from Portugal, Russia, Spain and Turkey were ‘bottomed’ in a sea area just off the southern coast of Spain. Rescue forces equipped with a range of sophisticated debris clearance, diver-assisted gear and submarine rescue vehicles from Italy, USA, Russia and Sweden, together with a jointly-owned rescue system from France, Norway and United Kingdom engaged in a series of rescue operations for the “sunken” submarines. The exercise will conclude in the next days with a 48-hour coordinated rescue and evacuation operation for some 150 survivors, including many simulated casualties, from a ‘disabled’ submarine. During the visit to the ships, submarine and rescue systems, the Chairman of the Military Committee was briefed on how this exercises can greatly contribute to enhance partner interoperability, providing specific military training, coordinating military assistance, and cooperating with the chain of command of key nations. Compatibility between rescue assets, standardization of procedures, coordination and cooperation between all national elements, both military and civilian, were among the exercise's objectives shown. The exercise is proving invaluable also for testing the command and control of this kind of incidents under internationally-agreed NATO procedures. During the demonstration CMC and General Makarov were ‘rescued’ from the Russian submarine through a NATO rescue systems, providing a concrete example on how platforms and procedures can successfully mate. Thanking the Spanish Navy for hosting the exercise, Admiral Di Paola said that “Exercises like the Bold Monarch 2011, beside the great value of all the objectives in term of improving safety and interoperability at sea, show how much interest and enthusiasm there is, within NATO and beyond, in strengthening networks in the field of cooperation and security.” General Makarov also stressed the importance of these successful exercises, in light of joint efforts to save human lives.


DCNS fabricates hull section for new sub.

DCNS said the hull section for the Barracuda class attack submarine is made of steel alloy. It measures about 29.5 feet in diameter by 13 feet in length and weighs 40 tons. It will form part of the aft half of the hull, immediately behind the nuclear reactor compartment and will eventually accommodate the suspended block containing the electrical distribution plant. Fabrication of the remaining hull elements for the submarine named Duguay-Trouin --20 other hull sections and four interface pieces -- will follow in the next few months, the company said. The Barracuda program, led by the French defense procurement agency, calls for delivery of six submarines from 2017-28. DCNS said construction of the Suffren, the first in the Barracuda class of submarines, is also on schedule at its Cherbourg center. The Barracuda submarines will be a key component of the French navy's force projection assets and will carry MdCN cruise missile and other armaments.


Cuts For US Submarines.

The US Navy’s roughly 55 nuclear-powered attack and guided-missile submarines represent one of the United States’ biggest advantages over potential enemies. The Navy this year managed to double, to two a year, the annual production rate for Virginia-class submarines, resulting in a long-term attack sub force of no fewer than 40 vessels – more, by far, than any other nation. But budgetary pressure could result in future cuts to the undersea fleet. At $2 billion apiece, attack submarines aren’t cheap. Possible sub cuts are a major concern for US lawmakers, particularly Democratic Senator Joe Lieberman, whose state of Connecticut is home to the United States’ major submarine shipyard, Electric Boat. The Diplomat spoke to a staffer in Sen. Lieberman’s office about the importance of, and fiscal threats to, the US submarine fleet. ‘The biggest challenge facing submarine production is the broader fiscal environment and the uncertainty surrounding the defense budget in light of the deficit-reduction effort on the table today,’ the staffer said. ‘The flipside is that, in terms of the programme itself, particularly the Virginia-class programme, it’s a programme delivering ships ahead of schedule and under the target cost, so that the programme is as healthy as any in the (Defence) Department’s portfolio – and in many ways could be a model programme for shipbuilding and any form of (military) acquisition.’ ‘Obviously our submarines provide a unique and uniquely American capacity for endurance, mobility and stealth in all missions they perform really in any environment in which they operate,’ the staffer concluded. ‘The key is to make sure that everyone weighing these decisions understands the unique...capability submarines bring to the fleet.’


Corruption halts Indian N-Submarine Plans.

Indian Navy has failed to sustain its nuclear submarines development plan due to prevalent corruption and grafts that has seeped into Indian Defence Establishment. According to details the Indian Navy has begun construction of its second and third nuclear submarines. The work on the first nuclear submarine continues, albeit belatedly, the delivery of Russian nuclear powered K-152 Nepra's to India by the Russians has also been delayed from March to October this year. Russia had earlier leased a nuclear submarine to India that latter was inducted in Indian fleet by the names of INS CHAKRA in late 1980s. Delivery of the first French Scorpene submarine being licensed built in India has been also delayed by three years. Finance has offered two more Scorpene class submarines in addition to the contracted six to cater for the forthcoming depletion in the existing submarine fleet. Seven of the fifteen Indian conventional submarines are due to end their operational life by middle of next year. The delay is not only in the submarine programme but also other platforms. Presently there are 36 ships and submarines on order with various Indian shipyards but all face inherent delays due to prevalent corruption and rafts that has seeped so much into the Indian Defence establishment. An inquiry by the Central Vigilance Commission had highlighted shocking tales of manipulation of tenders, cartelization, lack of quality control and use of sub-standard material on its war fighting machines.


Australia left in wake of Asian fleets.

AUSTRALIA is threatened by an explosion in the number of submarines in Asia and needs to boost its anti-submarine warfare capacity, a former intelligence analyst and military adviser to the Howard government says. Brice Pacey says countries such as India, Indonesia and China have embarked on a race to boost their submarine fleets, and that Australia could be left exposed as a result. In a paper for the Kokoda Foundation launched today, Mr Pacey argues that Australia should consider upgrading its Collins class submarines, speed up the building of 12 new submarines and equip small boats for anti-submarine warfare. Mr Pacey says by 2030 there will be more submarines in the region, capable of stealthier operations, carrying more effective weapons, deployed by states ''whose long-term intentions remain, at best, unclear''. In particular, China is expected to have 78 submarines by 2025, up from 65 last year, a number Mr Pacey says appears more than necessary for coastal defence and the maintenance of pressure on Taiwan.


Indonesia to Buy Korean Submarines.

Daewoo Shipbuilding and Marine Engineering has been awarded exclusive negotiator status to sign a W1 trillion export contract for diesel submarines with the Indonesian Defense Ministry and Navy, the company said Monday (US$1=W1,170). Korea was in competition with Russian, French and German firms. It became a priority negotiator alongside a French company in June. The winning bidder will build three 1,400-ton subs worth W1.2 trillion, making it Korea's single biggest arms export. Korea will join the group of submarine exporters only 20 years after it took over submarine technology from Germany. Only four countries -- Russia, Germany, France, and China -- export diesel subs. The U.S. and Japan build them for their own use. According to market researcher ICD Research, a total of 154 subs worth $180 billion are expected to be built around the world over the next decade, including some 100 diesel subs.


Bandit Sub Builders Bagged.

Colombian police found and seized two more drug smuggling submarine. One was found along a jungle river near the Panamanian border, the other several hundred kilometers south, also on the Pacific coast. Each sub belonged to a different faction of FARC (leftist rebels). One boat was equipped with an extensive collection of communications gear, indicating that it avoided capture by monitoring many police and military frequencies. The police allowed as how they had found the two subs based on intelligence. In the last year, the police have been collecting a lot of information on those who actually builds these subs for the drug gangs and FARC (which provides security, and often transportation for moving cocaine.) That includes finding out where the construction takes place, and where the boats are hidden between missions. Not mentioned was the fact that, in the last month, police had arrested eighteen members of a gang that specialized in building submarines and semisubmersible boats for transporting cocaine from Colombia to Central America and Mexico. As police suspected, some (five) of those arrested were retired or on active duty with the Colombian Navy (which operates two 1970s era German built Type 209 submarines). These arrests were part of an intense effort to find the people responsible for building subs for cocaine gangs. Find the builders, and you stop the building efforts. Since cocaine cartels in South America began using submarines and semi-submersible craft to transport cocaine north in the 1990s, the U.S. and Colombia have been desperately seeking the specialists responsible for designing and building these craft. Earlier this year, Argentina revealed they had arrested one of the main organizers of the sub building operation. The suspect, Ignacio Alvarez Meyendorff, was identified as working for the Colombian Norte del Valle drug cartel, and in charge of logistics for the submarine construction project. It's believed that Meyendorff was tracked down via information obtained by the U.S. Office of Naval Intelligence (ONI). Apparently, Meyendorff, or documents captured when he was arrested, provided enough data to make further arrests, and run down the location of many of the subs. The submarines that have been captured have, on closer examination turned out to be more sophisticated than first thought. The outer hulls are made of strong, lightweight, Kevlar/carbon fiber that is sturdy enough to keep the sub intact, but very difficult to detect with most sensors. The hulls cannot not survive deep dives, but these boats don't have to go deep to get the job done. The diesel-electric power supply, diving and surfacing system and navigational systems of captured subs was often in working order. It was believed that some of those who built these boats probably had experience building recreational subs. The sub builders also had impressive knowledge of the latest materials used to build exotic boats. It had already become clear that something extraordinary was happening in these improvised jungle shipyards. It was only last year that Ecuadoran police found the first real diesel-electric cocaine carrying submarine. It was nearly completed, and ready to go into a nearby river, near the Colombian border, and move out into the Pacific Ocean. The 23.5 meter (73 foot) long, three meter (nine feet) in diameter boat was capable of submerging. The locally built boat had a periscope, conning tower and was air conditioned. It had commercial fish sonar mounted up front, so that it could navigate safely while underwater. There was a toilet on board, but no galley (kitchen) or bunks. Submarine experts believed that a five man crew could work shifts to take care of navigation and steering the boat. The boat could submerge to about 16 meters (50 feet). At that depth, the batteries and oxygen on board allowed the sub to travel up 38 kilometers in one hour, or at a speed of 9 kilometers an hour for 5-6 hours. This would be sufficient to escape any coastal patrol boats that spotted the sub while it moved along on the surface (its normal travel mode.) The boat could also submerge to avoid very bad weather. The sub carried sufficient diesel fuel to make a trip from Ecuador to Mexico. There was a cargo space that could hold up to seven tons of cocaine. The sub was captured where it was being assembled, and a nearby camp for the builders, appeared to house about fifty people. A lot of evidence was collected, and apparently the U.S. DEA (Drug Enforcement Agency) used that to develop clues about who was involved. It was the DEA that put together the pieces that led to identifying Meyendorff and locating him in Argentina. The Ecuadoran boat was the first such sub to be completed, but not the first to be attempted. A decade ago, Russian naval architects and engineers were discovered among those designing and building a similar, but larger, boat. However, that effort did not last, as the Russian designs were too complex and expensive. It was found easier to build semi-submersible craft. But more and more of these new type subs are being found.

Small Size Sub Supplies Stunning Stealth.

South Korean officials are alarmed after discovering that the navy has only been able to detect 30 percent of the North Korean subs they come across. Moreover, North Korea is using its submarines more frequently in training (for sneaking people into South Korea ) exercises. North Korea has a fleet of over 80 mini-subs, plus about 24 older Russian type conventional boats (based on late-World War II German designs, as adapted for Russian service as the Whiskey and Romeo class). China helped North Korea set up its own submarine building operation, which included building some of the large Romeo class subs. North Korea got the idea for minisubs from Russia, which has had them for decades. North Korea has developed several mini-sub designs, most of them available to anyone with the cash to pay. The North Korean minisubs range in size from 76 to 300 tons displacement. Over a dozen of these small subs are equipped to fire torpedoes. The use of a North Korea midget sub to sink a South Korean corvette in March, 2010, forced the United States , and South Korea, to seriously confront the problems involved in finding these small subs in coastal waters. This was a difficult task, because the target is small, silent (moving using battery power) and in a complex underwater landscape, that makes sonar less effective. There are some potential solutions. After the Cold War ended in 1991, the U.S. recognized that these coastal operations would become more common. So, in the 1990s, the U.S. developed the Advanced Deployable System (ADS) for detecting non-nuclear submarines in coastal waters. The ADS is portable, and can quickly be flown to where it is needed. ADS is believed to be in South Korea. ADS basically adapts the popular Cold War SOSUS system (many powerful listening devices surrounding the major oceans, and analyzing the noises to locate submarines) developed by the United States. ADS consists of battery powered passive (they just listen) sensors that are deployed by ship along the sea bottom in coastal waters. A fiber optic cable goes from the sensors (which look like a thick cable) back to shore, where a trailer containing computers and other electronics, and the ADS operators, runs the system. ADS has done well in tests, but it has only recently faced the North Korean mini-subs. There, it was discovered how little capability South Korea warships had to detect the North Korean submarines. Moreover, there is not enough ADS gear to cover all the coastal areas where North Korean subs operate. South Korea is hustling to improve its anti-submarine capabilities. But decades of neglect will take years to recover from.


Sweden discovers sunken submarine off Gotland.

The Swedes have discovered a sunken submarine at the bottom of the Baltic Sea, south of the island of Gotland. According to the Swedish Armed Forces, the wreck was actually found in connection with a dive by marine researchers as long ago as in 2009, but the discovery was made public only now. According to Swedish Radio, the Armed Forces first believed the wreckage to be one of the wartime U-boats sunk by the Soviet Union that the Swedish Navy had already mapped out previously. Recently it was realised, however, that the wreck in question is previously unknown and dates from the time of the Cold War. The Swedes famously hunted Soviet subs in their waters with little material success apart from the embarrassing case of S-363, a Whiskey-class Soviet submarine that ran aground close to the Swedish naval base of Karlskrona in October 1981, but now the Swedish Navy suspects that the vessel may be another such Soviet sub, possibly one that sank while being towed. According to retired General Bengt Gustafsson, the former Commander of the Swedish Defence Forces, the Navy chased Soviet submarines in waters around Utö back in 1980, and the sunken vessel could be a Soviet submarine that was hit by depth charges.


Vietnam buys Russian submarines to fight with China.

Vietnam buys Russian submarines to fight with China Vietnam signed a military agreement with Russia aimed at the purchase of six submarines, as part of a strategy to reject China’s claims over the islands especially in resource-rich South China Sea, claims analysts. While much of the Vietnamese military equipment is old, it was decided to allocate huge sums to develop an underwater fleet because of tensions with its big neighbor to the archipelagos of Paracel and Spratly. Vietnam and Russia have long-term agreement signed this week, Prime Minister Nguyen Tan Dung during his visit to Moscow. Details were not published, but Interfax agency reports that Vietnam wants to buy six submarines Kilo class diesel-electric about two billion dollars. According to Vietnam’s decision is based on analysts’ concerns for the marine environment especially in the South China Sea, where China is facing. INB latest incident, Vietnam sent a diplomatic note to the Chinese embassy in Hanoi that requires China to return the boats and fishing gear off of some Vietnamese fishermen around the Paracel Islands. In these waters disputed by both sides reported more and more Chinese patrol boats recently. Read more in Issues « After Beijing +15, The Status of Women Tired of Illegal Immigrants? » And Taiwan claim the Paracel – occupied by China – while the Spratlys? Fight? China, Vietnam and the Philippines, Malaysia, Brunei and Taiwan. In 1988, Vietnam and China fought a brief naval battle near the Spratly. Archipelagoes are considered strategic outposts largest resources of oil, gas and fish. Vietnam has ordered 12 Russian Sukhoi Su-30MK2 appliances over $ 500 million.


Branson to visit deepest parts of the sea.

He's conquered land, air and soon space with his trains, planes and spacecraft but now Richard Branson will be heading up an expedition to film the fishy final frontier, going deeper into the sea than anyone has gone before. With the help of the BBC Branson and his team will film the five deepest ocean trenches in the world all in glorious Imax-quality 3D. The first dive will take place later this year at the Mariana Trench which is over 11km deep.

A one man submarine piloted by Chris Welsh will be used to explore the depths of the ocean, it uses a unique winged design which will literally help it to fly through the sea. Not only can the submarine go down to the bottom of the trench but it will be able to travel a further 10km along its surface. Richard Branson is set to take control of the submarine for the second dive in the Puerto Rico trench which is the deepest point in the Atlantic ocean at 8km. The submarine is the first of its kind made from 8,000pounds of carbon fibre, with a quartz dome which can withstand 13million pounds of pressure. It can dive at a rate of 350ft a minute, travel at a speed of 3 knots and will be able to make a return trip to the bottom of the Mariana trench in five hours.

The forgotten sea frontier.

In an unprecedented development, Russia recently signed a deal to procure at least two of France’s advanced Mistral-class amphibious warships at an estimated cost of $750 millions each, with option for two more. Ordinarily, this should be of no interest to Pakistan, were it not for the near-synchronous timing of an Akula II nuclear-powered Indian submarine sailing for Vishakhapatnam in the weeks ahead; if the voyage is not already underway, that is, since such movements are always shrouded in secrecy. India is expected to receive one more Akula II submarine to train its crews, for a total of five nuclear submarines. The indigenous production of two more Arihant-class submarines in the near future is also on the cards. The submarine bound for Vishakhapatnam, INS Chakra, has been undergoing sea trials for some time and its ten-year lease period, with a purchase option, has reportedly been agreed at a cost of $650 millions. This Russian-Indian-French defence nexus has been dubbed by some analysts as Russia’s newest “sell-in-the-east-and-buy-in-the-west” strategy. Russia views Indian ambitions to sortie out into blue waters as a seller’s paradise for its hardware, and France, with its double-digit unemployment and doubts about long-term sustainment of its defence industry, as a willing supplier of modern sea platforms. This fits in well with Russia’s desire to reorientate its Cold War-era maritime paradigm of deploying a large number of nuclear submarines in the Atlantic and Pacific oceans, to investment in more practical rapid-response intervention capabilities, such as those successfully employed by the US over the years. The Indian navy has an ambitious expansion plan of having 166 ships by 2022, at a cost of $12 billions. Its Naval Aviation is already operating BAE’s Harriers and is further being equipped with Boeing’s P-8 Poseidon MMA (multimission maritime aircraft), which is a successor to P3C Orions. For conventional submarines, it has been operating the Russian Foxtrot-class vessels with some German 209s, and of late has signed on for the French Scorpions. Its surface fleet and maintenance support structure are Russian to the core and are likely to remain so. There have been some calls for the cancellation of the Scorpion contract because of allegations of $113 millions in kickbacks, but the corrupt across the border too appear to be managing the din well. The Pakistani navy has historically maintained an edge over the Indian navy in submarine warfare. But with a sizable number of newer Russian nuclear and French conventional submarines in the Indian fleet, this edge may not be maintainable; more so as the first of the Pakistani navy’s Agosta submarines reaches its midlife in 2013-14, and the other two will reach theirs by the end of the decade. There has been slippage in timely replacements of our fast-depleting subsurface assets; not least because the preferred German three-submarines option was way beyond our financial affordability. But nor is the status quo tolerable, as this important maritime defence capability, structured so painstakingly over four decades, cannot be allowed to wither away. Rather than for us to lose more precious time, one option which merits serious consideration by Pakistan is revival of collaboration with France for the construction of a fourth Agosta-90B submarine at the Karachi Shipyard and Engineering Works. There was a significant indigenous capability installed at the KSEW during the execution of this programme, a capability which would go to waste and skilled manpower degenerate if not put to further use. On the downside, if Sarkozy and Zardari have to deal with such an idea twice in their political careers, well, that is fate. The Amazon-class frigates in service with the Pakistani navy, acquired from the UK in the ‘90s, are nearly 40 years old. The Oliver Hazard Perry class frigates currently under transfer from the US under an FMS programme are also over 30 years old. Unless there are more additions, the four Chinese-built F-22P frigates supported by some lower tonnage vessels with over-the-horizon missile capability will, in all likelihood, fall well short of a minimum force structure required for protection of our seaborne commerce and maritime assets, including under-the-seabed exploration and exploitation of hydrocarbons and metals in the EEZ. On the other hand, the Indian navy’s goals for 2022, helped by India’s stable politics and a performing economy, appear realisable. The Pakistani navy is presently participating in the US-led Combined Task Forces (CTF 150, 151 and 152), and quite rightly so, if we are to remain in contention in the region. This, however, is not without the dilemma of our utilising valuable national assets in an international effort. The blue water navies of the developed world have built-in extra-regional potential and stamina, unlike the navies of the developing countries. Any overstretch with blue-water horses in CTFs has therefore to be watched, since some day we will have run our own Derby, and, more importantly, will win. To compound our difficulties, we are beset with a serious ongoing insurgency. The 1948-1960 insurgency by the Communist Party of Malaya is usually taken as a datum for longevity of wars against the state, as it lasted for 12 years. The LTTE’s movement in Sri Lanka died down after nearly 25 years. In Pakistan, judging by the tenacity of the enemy within, we may similarly be in for a long haul. This growing disparity and our apparent helplessness to do something tangible about it is a source of concern. Our political system is far from stable and courts failure to inspire the confidence of foreign investors. Without foreign investment economic progress will remain elusive, and this means that our financial strength will be insufficient for generation of the kind of resources required for a planned naval replacement programme. Energy security in the 21st century is likely to remain a key concern for both the developed and developing economies. China and Japan, to cite one example, are jointly putting up $25 billions to build a navigational canal through southern Thailand, which will obviate the need for oil tankers to steam through the pirates-infested Malacca Straits. Gwadar can play a crucial role in Pakistan’s energy security in this century. The Chinese petroleum ministry has surplus capacity and is looking at Gwadar for any possibility for investment in view of the special relationship between the two states. China has other interests too, as the distance between its more developed eastern region and the less developed western region is greater than that between the Chinese west and Gwadar. The differential is causing demographic dislocation, and China wants to take advantage of Gwadar’s proximity to speed up development and stem the population surge to its east. Let us hope that there is an early decision in the Supreme Court on the petition for cancellation of management control to the Port of Singapore Authority (PSA) which, shorn of corporate jargon, establishes a baseline throughput roughly the equivalent of 21 ships calling per week before any royalty can be paid to the Gwadar Port Authority. The PSA has also not yet started the contractual $525 millions investment which is to be completed by 2013. How one wishes the Pakistani negotiators of this deal were a little bit sincere with the country. If the contract is cancelled, Pakistan should seriously and expeditiously engage China on its interest to invest up to $13 billion in such areas as increase in Gwadar Port’s existing berths from three to 18, building of an oil pipeline between Xinjiang and Gwadar to set up an energy corridor, development of a 21-million-tons capacity Gwadar Port Energy Zone, setting up of an energy-sector industries in this zone and oil and gas exploration ventures. If this was an academic debate, there would be no issue losing out to the predominant landlubbers’ lobby in the country, but the ramifications of ignoring Pakistan’s maritime frontier go far beyond and are too grave to neglect. It will be unfortunate if in the 21st century, Japan and China, and even India, have secure seaborne energy lifelines, while Pakistan, in spite of Gwadar’s strategic location just 180 miles east of the Strait of Hormuz, remains vulnerable for its energy needs. There is enough common cause in Gwadar to work with China for mutual benefits.


Thai Navy plans to buy submarines from Germany.

The Royal Thai Navy wants to buy two second-hand submarines at a cost of 6-7 billion baht [$ 195m - $ 228m].The specifications of the submarines have not been determined but the navy is expected to buy them from European suppliers, probably Germany. Thailand reported near submarine deal with Germany. Abhisit Vejjajiva has approved a plan for the Royal Thai Navy  to purchase six secondhand submarines from Germany for 7.7 billion baht (257 million dollars), a newspaper reported Monday. The U-206 Class subs, which are intended for missions in the Andaman Sea and the Gulf of Thailand, would constitute Thailand's first submarine fleet, to be commanded by Rear Admiral Suriya Pornsuriya, the Bangkok Post said. The Thai navy has had submarines on its wish list for many years. It commissioned its first aircraft carrier , the HTMS Chakri Naruebet, in 1997. The submarine purchase is part of a long-term plan by the Abhisit government to buy weapons for the army, navy and air force over 10 years at a total cost of more than 500 billion baht. Military budgets in Thailand have skyrocketed since the army overthrew the government in 2006. Since then, the military has reasserted its pivotal role in Thai politics although civilian governance was restored in 2008. Previous plans to deploy submarines have been criticized on the grounds that the Gulf of Thailand was too shallow for their effective use. The U-206 Class sub was first deployed in the 1970s and is one of the smallest attack submarines in the world with a displacement of about 500 tons. It is said to be particularly effective in depths of about 20 metres. It runs on diesel engines and electric motors and is tasked for anti-surface and anti-submarine warfare, mine-laying and reconnaissance. With a crew of 22, the sub can be armed with eight torpedoes and 24 mines. The German navy has operated the subs for more than 30 years but is in the process of decommissioning them. The submarine purchase was expected to be proposed to the Thai cabinet for formal approval in the near future.


Terrorist Submarines.

US security officials are reportedly worried that a new generation of drug-smuggling submarines - able, unlike their predecessor semi-submersibles, to travel completely submerged beneath the waves - might be used to carry out terrorist operations. The "terrorists" quote comes from a new report by the Houston Chronicle on the only known true narco-submarine, which was captured last July by Ecuadorean security forces cooperating with US drug-enforcement agents. After its seizure by the Ecuadoreans at a remote jungle "shipyard" complex, the narco-sub was taken to the port of Guayaquil, where it has now been examined by "naval experts from multiple countries", according to the report. "It is everything it is supposed to be. It is a bona fide long-range, fully submersible craft," Jay Bergman, US Drug Enforcement Administration (DEA) chief for the Andes region, told the Chronicle. "It wasn't the Love Boat," added the straight-talking fed. The Texan paper also quotes Laurence McCabe, a professor at the US Naval War College, as stating that the appearance of true submarines in criminal hands is causing much concern in military and security circles. "The US military is taking this threat very seriously and thinking through all the implications of this sort of platform," said McCabe, adding that such subs could easily carry terrorists instead of drugs. Apart from this insight, the Chronicle report offers some new information on the sub itself. Apparently it had twin diesel engines for normal operation with exhausts and air intakes above the surface, much as in the case of the semi-submersibles long used in the Central and South American drugs trade. However, the nameless craft also has a "diesel-electric power system", according to the DEA, which includes 100 "suitcase-sized" batteries installed beneath the deck of the main compartment housing crew, controls, engines and auxiliary machinery. The cargo hold forward is apparently capable of holding up to seven tonnes of narcotics. A commercial fish-finding sonar is apparently installed, allowing the crew some warning of obstacles ahead even when fully submerged. A periscope is also fitted. According to the Chronicle, McCabe also offered some figures on likely submerged performance: He also said it likely would have been able to travel about 20 knots per hour for up to an hour, but would have to slow to about 5 knots for more extended under­water travel. The faster it travels under­water, the more battery power it needs. The more it uses batteries, the closer it has to come to the surface to recharge them. That would actually be excellent performance for a full size naval diesel-electric submarine built in a modern shipyard: an vessel improvised in a jungle backwater would be extremely unlikely to be capable of more than five knots flat out submerged, and would not be able to travel any large distance at all before running its batteries flat.


Ten in Portuguese submarine fraud case to stand trial.

Three German and seven Portuguese nationals are to be tried for alleged fraud related to the purchase of two German submarines by Portugal in 2004, a judicial source said Tuesday.  The ten people, who were not named, face allegations of forging invoices related to the sales contract by the German Submarine Consortium (GSC), the company making the submarines. Among the accused are two executives of German industrial services company MAN Ferrostaal, part of the consortium. However a trial date has yet to be announced, the court official said.  A probe was launched last April at the request of the accused. Portuguese and German authorities are also investigating whether Ferrostaal paid bribes during the sale of its submarines. The first was delivered last June.


Taiwan Subs.

To score against his domestic political opponents, gain leverage in negotiations with Beijing, and assure Washington that his country remains committed to defending itself, Taiwan's President Ma Ying-jeou presents himself as a commander-in-chief who insists on a military with the highest standards. Yet despite the appeal Ma's style has to the general audience, a glimpse behind the scenes of Taiwan military affairs sometimes reveals neglect that on the daily basis puts Taiwanese servicemen and women's lives at risk. Arguably the most hair-raising examples of this are the island's two Guppy-class submarines. Built in the World-War-II era, they are the oldest serving submarines of any navy on the planet, and unsurprisingly, they are beginning to fall apart. While Ma's Kuomintang (KMT) government wastes its breath by persistently requesting the fanciest weapons the US has on offer, the clock ticks. The more often the age-old Guppies leave their port, the likelier is the day they will become steel coffins for their crews. Their deaths - or indeed even more so their rescue - could then well bring about weighty repercussions for Taiwan's political fate. ell bring about weighty repercussions for Taiwan's political fate. While China's People's Liberation Army Navy (PLAN) has roughly 60 submarines under its command, Taiwan's navy has four. Although the administration of former US president George W. Bush in 2001 announced an arms-sales package that included eight boats, procurement has proved difficult as the US ceased building diesel subs in the 1950s, and the remaining manufacturing countries have little interest in putting their lucrative relations with Beijing into jeopardy for coming to Taiwan's aid. The US at one stage offered to arrange the procurement of fairly priced vessels decommissioned by the Italian Navy, but Taiwan somewhat stubbornly insisted on new ones. Moreover, a program to locally build submarines has so far been unable to get the support of Taiwan's Ministry of National Defense (MND). But nonetheless, what has been by far the biggest factor keeping Taiwan from obtaining decent submarines is a lack of consensus among the island's notoriously feuding political parties. And while those bicker, the state of the subs the Taiwan Navy operates has become severe. Two of the Taiwanese subs are Dutch-built, modified Zwaardvis-class attack submarines, each accounting for 25 years of service. The other two boats are US-built Guppies, the oldest operational submarines in the world. Just how spine-chillingly antiquated these subs are is illustrated by the story of their development. The US Navy obtained the Guppy technology by testing and reverse engineering captured Nazi U-boats. This is the state of technology that Taiwan still sends to plough the seas in 2010. Neither the Sea Lion nor the Seal - as the Taiwanese Guppies are named - are equipped with torpedoes, as the boats are used exclusively for training. During naval exercises, the Guppies are assigned to simulate PLAN subs, allowing surface ships to practice anti-submarine warfare (ASW) techniques. After an overhaul in the early 1960s, the boats could dive to 125 meters, yet by the late 1990s, a commander wouldn't have dared to exceed a depth of 60 meters. Because of the fear of accidents, the Guppies stay on the ocean's surface as much as they can.

German Submarines.

 It is almost totally silent, radiates virtually no heat and is constructed entirely from non-magnetic metals. Meet the U212A -- an ultra-advanced non-nuclear sub developed by German naval shipyard Howaldtswerke Deutsche Werft, who claim it to be "the peak of German submarine technology." And few would argue. The super-stealth vessel is the first of its kind to be powered by a revolutionary hydrogen fuel cell that lets it cruise the deep blue without giving off noise or exhaust heat. That's important, because according to Bernd Arjes, a captain in the German Navy, silence keeps submariners alive. "We operate in coastal waters around Europe and this submarine is specially designed for finding submarines. If you want to find other submarines of course you have to be quiet," he said. With this latest technology, he added, "the boat is virtually undetectable." But being indistinguishable is not the only thing that sets the U212A apart. Unlike conventional subs, which need air to combust diesel, the fuel cell doesn't require oxygen to operate. This means it can remain submerged for many weeks -- holding its breath many times longer than its gas-guzzling cousins. You'd expect a boat like this to pack a punch, and you'd be right. The 212A is armed with 12 heavyweight wire guided torpedoes, each capable of destroying a war ship or disabling an aircraft carrier. "An aircraft carrier might not break with one torpedo but probably gets hit at the rudder or something. And then he probably can't maneuver into the wind to use his aircraft," said Arjes. Germany, which has no nuclear weapons or nuclear-powered ships of its own, is the world's third largest exporter of defense goods. HDW began developing the technology for the U212A in 1994, with the first vessels reaching market in 2003.  Export editions have already been sold to the navies of Greece, Portugal and South Korea. But sub-aquatic sailors around the world should think twice before getting too excited over this new toy. With a high degree of self-automation, the sub requires only a small crew and there is extraordinarily little in the way of creature comforts for those few on board. And so it seems that even with all this state-of-the-art technology, a submariners life still remains one of confined living quarters and shared bunks.


Submarine deal: Malaysian Deputy minister ‘lied’.

French news portal reveals that it was the Malaysian government and not Amaris, which paid Perimekar 114 million euros in commission. In the latest twist to the submarines deal, a French portal reveals that it was the Malaysian government which paid 114 million euros (RM493.59 million at current value) to Perimekar Sdn Bhd, of which Abdul Razak Baginda’s wife was the majority shareholder. Quoting sources cited by the plaintiffs in an ongoing legal suit, Rue89 said that it was not the French company Amaris which paid the commission. This contradicts the stand taken by the Malaysian government.  Deputy Defence Minister Zainal Abidin Zin had said in Parliament in 2006 that the commission was not paid by the government. Zainal Abidin was reported by the local media as saying that the French company paid the commission for a coordination and support services project. “We did not pay commission to anyone as claimed by Lim (Kit Siang), and the commission was paid voluntarily by France,” said Zainal Abidin, as quoted by the Star on Dec 7, 2006. “We cannot stop them if they want to give a commission. All the expenditure by the ministry had been tabled in Parliament and audited,” he had said. The Malaysian Defence Ministry repeated this in a statement on April 2007, as reported by the New Straits Times, that the government did not pay any commission to Perimekar for the purchase of the submarines. The ministry added that the local company was appointed only to provide the support services and co-ordination as it was a more effective method. The ministry paid one billion euros to Amaris for the two Scorpene and one Agosta submarines, for which Perimekar received the 11% commission from the French contractor. However, the Rue89 report claimed that the Malaysian government paid the sum, “with the sole purpose of circumventing the OECD Conventionon (on combating bribery of foreign public officials in International Business Transactions).” The purchase of the submarines, which also implicated Prime Minister Najib Tun Razak, who was the then defence minister, had been enveloped in sorts of allegations. The brutal murder of Mongolian national Altantuya Shaariibuu in Malaysia was also linked to the matter, after Abdul Razak, a close aide of Najib, was charged with abetting the murder. He was later acquitted. It was speculated that Altantuya, an interpreter who acted as intermediary for the contract, was killed for having loudly demanded her share of the commission. Both Najib and the authorities denied this. Further legal action is due to be initiated in the next few days, with Suaram, a Malaysian NGO dedicated to the fight against corruption and member of the International Federation for Human Rights (FIDH), applying to join proceedings as a civil party, which already applied for a judicial review in November 2009. Suaram would thereby have access to the details of the investigation, which is also a way to force the prosecution service to contact an examining magistrate, the last step before a trial that could last for years. As was the case for contracts won by the DCN for submarines to Pakistan and frigates to Taiwan, there are increasing suspicions of retrocommissions to French political parties. This case concerns the sale of two Scorpène submarines and an Agosta submarine to the Malaysian government. A contract worth approximately one billion euros, that was signed in 2002 with the Malaysian DCNS (former DCN, Department of Naval Construction) and Thalès.


Model’s body blown up with explosives over submarine deal.

Sex, murder, bribery, and suspicions (of) retrocommissions: the cocktail is explosive. It all started with the 2006 murder of Altantuya Shaaribu, a young model, interpreter and also an intermediary in this contract. Her body was found in the Malaysian jungle after being blown apart with explosives. The young woman appears to have been assassinated for having loudly demanded her share of the commission in an arms deal, in which the other parties involved were her lover, Abdul Razak Baginda, a friend and adviser of the other person involved, Najib Tun Razak, then Malaysia’s minister of defence and now the country’s prime minister. However, this shady affair hides another, which the French courts took note of. In December 2009, Suaram filed an initial suit against X at the Paris court for “active and passive corruption, trading of favours and abuse of corporate assets”. The state prosecutor Jean-Claude Marin then opened a preliminary investigation. At the time, it was suspected that a bribe of 114 million euros had been paid by the company Armaris (a subsidiary of DCNI and Thalès) to Najib and his entourage, through the company Perimekar. This company, which was officially established to “coordinate” the sale of the three submarines, had Abdul Razak Baginda’s wife as its majority shareholder.


Israel buys Dolphin submarine.

Israel will purchase its sixth Dolphin submarine from Germany at the expense of $1 billion, officials announced Thursday, despite constant objections by the IDF echelon. A special ministerial committee decided to accept the recommendations of Defense Minister Ehud Barak, who promoted its purchase. Israel already operates three Dolphins and bought two more from Germany in 2006. Dedicated to the security of the Jewish state founded in the wake of the Holocaust, Germany had sold those submarines at deep discounts. But Berlin, beset by budgetary constraints, balked in talks last year at similarly underwriting the sixth Dolphin. Foreign reports said Thursday that the two vessels, expected to arrive this year, have the ability to carry nuclear warheads and are to be used in a possible counterattack against Iran, in the event that the latter launches an assault that paralyzes population centers in Israel. Prime Minister Benjamin Netanyahu also promoted the deal as per Barak's recommendations, but military officials were wary – both the former and current IDF chiefs said during official hearings that there was no pressing need to acquire such an expensive piece of equipment. The objections, however, were based solely on the high price – which is to be paid out of the defense budget – and not on the benefits a sixth submarine could afford the state. Gabi Ashkenazi and Benny Gantz were not the only military officials opposed to the purchase of additional submarines. Former IDF Chief of Staff Dan Halutz claimed back in 2006 that one submarine – rather than the two eventually purchased – was enough to carry out the missions allotted to the vessels. The decision to buy the vessels was made initially by former Prime Minister Ariel Sharon, and his successor, Ehud Olmert, decided to carry out the purchase


Three Russian submarines to undergo sea trials in 2011.

Russia's Sevmash shipyard will begin sea trials for three new generation nuclear-powered submarines, which are under construction at the shipyard in Severodvinsk, a media report said. The sea trials will begin with the first nuclear-powered ballistic missile submarine (SSBN) Yuri Dolgoruky, followed by the second such sub, Alexander Nevsky. The shipyard will also conduct sea trials for Severodvinsk, the fourth-generation ballistic missile nuclear attack submarine constructed under Project 885 Yasen (Graney class) nuclear attack submarines, Arms-Tass reported. In September 2010, the shipyard had completed factory sea trials for Yuri Dolgoruky. The submarine will also conduct the first test-firing of its main weapon system, the Bulava Intercontinental ballistic missile, during sea trials by mid-summer 2011, the report said. The first Borey class sub is scheduled to enter service with the Russian Navy in the first half of this year while the second submarine of the class, Alexander Nevskiy, is expected to be commissioned in December 2011 in the Russian Pacific Fleet. The multi-purpose Severodvinsk, launched on June 15, 2010, is also set to join the Navy in 2011.


22 submarines in accidents during past decade.

Nineteen major naval accidents have taken place over the past decade, involving 22 submarines. The majority have involved American submarines. In total, there have been nine American submarine incidents, five Russian, four British, and one Chinese, Canadian, Australian and French accidents. Britian's HMS Astute ran aground in October last year off Skye while it was being put through sea trials. The £1.2bn submarine's rudder got stuck in mud and shingle while trying to take crew aboard. Months later, Lieutenant Commander Ian Molyneux, 36, was shot dead aboard the submarine. Crew member Ryan Donovan was charged with his murder and the attempted murder of three other crewman. Other submarine incidents to have occurred over the past ten years include the Ming 361 sinking in 2003. A "mechanical malfunction" on the Chinese diesel-powered submarine killed the entire 70-man crew in one of the worst naval accidents experienced in communist China's history. In 2008, six sailors and 14 civilian workers were killed and 21 were injured when the Russian K-152 Nerpa firefighting system went off during sea trials, releasing Freon coolant into the air on board. Twenty-one casualties were evacuated to a military hospital in Vladivostok suffering from poisoning. Four members of the US were washed overboard from The USS Minneapolis-Saint Paul in 2006, while in 2007 two members of the HMS Tireless were killed. Leading Operator Mechanic Paul McCann, 32, and Operator Mechanic Anthony Huntrod, 20, died when an oxygen-generating device exploded as they activated it during a training exercise while it was under the Arctic ice cap.

Russian Navy to outflank rivals in secrecy and low noise by 2020.

Chief of the Russian Navy, Admiral Vladimir Vysotsky is sure: the task of equipping the Russian Navy with modern weaponry is within the powers of the country’s industry. By 2020, the fleet will have received at least eight newest multi-purpose nuclear submarines of the Severodvinsk class. The sea trials of the new sub are scheduled for August. The SSBN "Severodvinsk" was developed by the "Malachite" marine engineering office in St. Petersburg. The sub developer Vladimir Dyatlov is sure that submarine "Severodvinsk" is 98.9% ready. All the weapons mounted on the submarine have been tested. The sub will go to the White Sea for 2 months and then pass the final phase of state testing. The new submarine is different from conventional design patterns. For example, the torpedo tubes are located behind the central post and not in the bow, which allowed to place the antenna of the new system of underwater acoustics in the bow. Eight vertical launchers of the powerful weapon system will allow for a timely and precise launch of supersonic cruise missiles and all-purpose deep water homing torpedoes. The nuclear installation of the SSBN "Severodvinsk" also has a new concept. Currently, a second submarine of the 885 "Kazan" project is being built at the Sevmash plant in Severodvinsk, Russia, – the Navy is going to get it before 2015. A Yasen class sub "Kazan", along with "Severodvinsk", is a double-ulled, one-shaft SSBN with a very low noise level. Its hull is divided into 10 sections; the sail of the sub is of streamlined shape. When armed with new nuclear submarines, the Russian Navy's submarine fleet is expected to exceed their foreign counterparts in secrecy and low noise.


Bribes for Submarines reached up to 230 million euros.

A complex system of offshore accounts, under-the-table payments and bogus invoices helped several people, including former members of the Defense Ministry, earn a combined total of up to 230 million euros in bribes, according to documents seen by Sunday’s Kathimerini. The paperwork relates to the troubled purchase of German submarines by the Greek navy in previous years. Akis Tsochatzopoulos, who served as defense minister between 1996 and 2000, has repeatedly denied accusations of being involved in corrupt deals. A Piraeus-based company, MIE, is alleged to be at the center of an investigation into payments made to a series of middlemen and public officials. The role of two German companies, HDW and Ferrostaal, is also being probed. It has been claimed that Ferrostaal, until 2009 a subsidiary of MAN, which was part of the consortium that won the contract in 2000 to supply the Greek navy with four submarines, paid substantial bribes to secure the deal for the first of these vessels. The agreement for the four submarines was worth 1.26 billion euros


Prosecutor gets file on ex-ministers and submarine deal.

Up to four former defence ministers face action in connection to alleged bribes. A Supreme Court prosecutor is to study the evidence in a case file sent to him on Thursday before deciding whether former defense ministers Yiannos Papantoniou, Spilios Spiliotopoulos and Vangelis Meimarakis should face any further investigation in connection to the purchase of four German submarines by the Hellenic Navy. Sources said that the office of the Athens first instance court prosecutor had sent the file, which concerns events between 2002 and 2009, to Supreme Court deputy prosecutor Athanasios Katsirodis, who will have the final say on whether the details should be sent on to Parliament. Katsirodis is already studying another file, relating to events between 1998 and 2002, when Akis Tsochatzopoulos was defense minister. New Democracy asked for the case to be fast-tracked “because of the seriousness of the matter, the number of people implicated and because of the possible involvement of ministers who have served for the ruling party.” A total of 37 people, including high-ranking members of the armed forces and businessmen, have been called by a prosecutor to answer questions about allegations of bribery linked to the purchase of the submarines. Greece ordered the Type 214 diesel-electric submarines, manufactured by ThyssenKrupp in Germany, between 2001 and 2005 but the deal, worth 1.26 billion euros, was plagued by complications after Greece rejected the first submarine due to technical problems. The prosecutor has called the 37 to testify as suspects after an investigation by the financial crimes squad (SDOE) uncovered evidence of under-the-table payments. A complex system of offshore accounts, under-the-table payments and bogus invoices helped several people, including former members of the Defense Ministry, earn a combined total of 230 million euros in bribes, according to an investigation conducted by SDOE. The investigators believe numerous bribes were paid before the contract was signed. One of the ways the bill was allegedly inflated, allowing for more under-the-table payments to be made, was for the navy and Defense Ministry to ask for the submarines to be fitted with all sorts of extra equipment


Iran to unveil 500-ton submarines.


A top Iranian military commander has announced plans to manufacture and deploy new domestically built submarines to patrol the country’s southern coasts. Deputy Commander of Iran’s naval forces Admiral Amir Farhadi said the 500-ton submarine would join the Army’s naval fleet by July 2012, in an interview with IRNA on Sunday. The medium-size vessel was primarily designed to patrol Iran’s southern waterways, especially the Persian Gulf and Strait of Hormuz, Farhadi added. Last August, four additional 120-ton Ghadir submarines joined the Iranian naval fleet on the country’s southern coast. The Ghadir submarine was first unveiled in 2007. Iran now operates more than ten of them, primarily in the Persian Gulf and the Sea of Oman. In recent years, Iran has made important breakthroughs in its defense sector and attained self-sufficiency in producing important military equipment and systems.
The Islamic Republic has repeatedly assured that its military might poses no threat to other countries, stating that Tehran’s defense doctrine is based on deterrence only.




Germany is to retire six of its Type 206A submarines in order to save money as its defence budget dwindles, a spokesman said in the Baltic naval port of Gluecksburg on Thursday. The German Navy had originally planned to phase out its 10 remaining Type 206A subs gradually. The six were scheduled to be retired by 2015 and sold to other navies, but the order has now been given to mothball them with immediate effect. The diesel-electric submarines, which were designed to attack shipping in the shallow Baltic Sea, have been in service for 40 years. They are being replaced by the Type 212A, a hush submarine that can remain underwater for weeks thanks to its fuel-cell motor. A naval spokesman said the decision was for economic reasons. The Defence Ministry has been told to prepare for drastic budget cuts. The spokesman said the Navy would redeploy the six idle Type 206A crews to share duties in rotation on the remaining four submarines of the same class.


Brazil building Scorpene-class subs.

Brazil has started building four conventional submarines in preparation for developing technological capability to build a nuclear one with French help. The Scorpene-class attack submarines are modeled after the original French-Spanish submersibles and their construction follows a 2009 agreement for extensive technology transfer enabling Brazil to replicate French components and plans. "The merits of this partnership are technology transfer and a strategic alliance that will strengthen and advance the skills of our navy and industrial sector, making it more modern and capable of defending the country," said Brazilian President Dilma Rousseff. "We seek nuclear propulsion only for defensive, never offensive, purposes." Rousseff said the submarine construction program was a strategic issue for Brazil and a response to new defense requirements with vast hydrocarbon reserves discovered over the past few years and scattered offshore hundreds of miles from the shore. Brazil has also set sights on becoming the lead defense manufacturer in South America, supplying neighbors and allies its products on easy financial terms that will guarantee the country diplomatic and political pre-eminence in the region. The first of the four submarines is to be completed in 2016. "Brazil is becoming part of a small group of countries which have the knowledge and technology to build submarines," Rousseff said. "The capacity to produce submarines is a strategy for both defense and economic growth," she added, citing the export potential as Brazil strives to reduce dependence of commodity exports for its main earnings. The Scorpene-class submarine consists of more than 36,000 components, which will be produced by 30 Brazilian companies, Rousseff said. Brazilian state defense industry estimates the venture will create at least 46,000 jobs. Work on the nuclear submarine project is also in the early stage and it isn't clear how many experts have been deployed for that purpose. Brazil's first nuclear submarine is to enter service in 2023. Brazil and France signed a $4.25 billion contract for the construction of the four enlarged S-BR diesel-electric submarines, originally designed by French DCN and the Spanish company Navantia and now by DCNS, the brand adopted by the former French Direction Technique des Constructions Navales and the Direction des Constructions Navales. The Scorpene-class submarine is equipped with six 533-mm torpedo tubes for 18 torpedoes or SM.39 Exocet anti-ship missiles, or 30 mines in place of torpedoes. It wasn't immediately clear if the S-BR submarine will be equipped with an air-independent propulsion system that allows a submarine to operate without the need to surface or use a snorkel to access atmospheric oxygen.

US subs, divided into 4 classes.

According to the U.S. Navy's website, there are 77 submarines either in service, under construction or under contract to be built. There are 18 submarines that carry ballistic or guided missiles. They are the Ohio class. All have a home base either in Bangor, Wash., or King's Bay, Ga. There are 59 "attack" submarines, all nuclear-propelled and spread around the United States or U.S. territories. They are divided into three classes: • The Los Angeles class has 43 submarines. • The Virginia class has 13. • The Seawolf class has 3.


Graney Goes To Sea.

The fifty man crew for the first Graney (Yasen) class SSGN (nuclear powered cruise missile sub) has taken their boat to sea, or at least around the harbor. Sea trials begin in three months, but first the sub is taking baby steps to ensure that everything works. Nevertheless, these harbor trials are seen as major progress. Russian submarine building has been on life support since the Cold War ended in 1991. Many subs under construction at the end of the Cold War were cancelled, and the few that avoided that spent a decade or more waiting for enough money to get finished. The first Graney crew was put together five years ago, and has been training, and waiting, ever since. The crew will now continue training on their new boat, which will enter service next year.  Two years ago, construction began on a second Graney class SSGN. Russia plans to complete six boats of this class by the end of the decade. Construction of the first Graney class boat, the Severodvinsk, began in 1993, but lack of money led to numerous delays. Originally, the Severodvinsk was to enter service in 1998. Work on the Severodvinsk was resumed seven years ago. If work is not interrupted, the second Graney class boat should be ready in less than five years. The 9,500 ton Graneys carry 24 cruise missiles, as well as eight 650mm (25.6 inch) torpedo tubes. Some of the cruise missiles can have a range of over 3,000 kilometers, while others are designed as "carrier killers." The larger torpedo tubes also make it possible to launch missiles from them, as well as larger and more powerful torpedoes. The ship is highly automated, which is why there is a crew less than half the 134 needed to run the new U.S. Virginia class boats. The Graney design is based on the earlier Akula and Alfa class SSNs. Russia had originally planned to build 30 Graneys.


North Korea Builds A Bigger Little Shark.

North Korea has apparently been building an improved version of its Song (Shark) class mini-sub. The 250 ton Sang is actually a coastal sub modified for special operations. The original design is a 34 meter (105 feet) long boat with a snorkel and a top submerged speed of 17 kilometers an hour (or 13 kilometers an hour when at periscope depth using the snorkel to run the diesel engines). Top surface speed is 13 kilometers an hour. Max diving depth is 150 meters (465 feet) and the boat is designed to rest on the ocean bottom (useful when trying to avoid enemy search). There is a crew of 15, plus either six scuba swimmer commandos, or a dozen men who can go ashore in an inflatable boat. Some Songs have two or four torpedo tubes. Max endurance is about eight days. The new model is 39 meters (121 feet) long and is believed to have a max submerged speed of 27 kilometers an hour. Over 40 Songs have been built so far, and one was captured by SouthKorea when it ran aground in 1996. At least half a dozen are of the new model. NorthKorea has a fleet of over 80 mini-subs, plus about 24 older Russian type conventional boats (based on late-World War II German designs, as adapted for Russian service as the Whiskey and Romeo class). China helped North Korea set up its own submarine building operation, which included building some of the large Romeo class subs. North Korea got the idea for minisubs from Russia, which has had them for decades. North Korea has developed several mini-sub designs, most of them available to anyone with the cash to pay. The most popular mini-sub is the M100D, a 76 ton, 19 meter (58 foot) long boat that has a crew of four and can carry eight divers and their equipment. The North Koreans got the idea for the M100D when they bought the plans for a 25 ton Yugoslav mini-sub in the 1980s. Only four were built, apparently as experiments to develop a larger North Korean design. There are to be over 30 M100Ds, and they can be fitted with two torpedoes that are carried externally, but fired from inside the sub. North Korea is believed to have fitted some of the Songs and M100Ds with acoustic tiles, to make them more difficult to detect by sonar. This technology was popular with the Russians, and that's where the North Koreans were believed to have got the technology. The most novel design is a submersible speedboat. This 13 meter (40 foot) boat looks like a speedboat, displaces ten tons and can carry up to eight people. It only submerges to a depth of about 3.2 meters (ten feet). Using a snorkel apparatus (a pipe type device to bring in air and expel diesel engine fumes), the boat can move underwater. In 1998, a South Korean destroyer sank one of these. A follow-on class displaced only five tons, and could carry six people (including one or two to run the boat). At least eight of these were believed built. The use of a North Korea midget sub to sink a South Korean corvette in March, 2010, forced the United States, and South Korea, to seriously confront the problems involved in finding these small subs in coastal waters. This is a difficult task, because the target is small, silent (moving using battery power) and in a complex underwater landscape, that makes sonar less effective. There are some potential solutions. After the Cold War ended in 1991, the U.S. recognized that these coastal operations would become more common. So, in the 1990s, the U.S. developed the Advanced Deployable System (ADS) for detecting non-nuclear submarines in coastal waters. The ADS is portable, and can quickly be flown to where it is needed. ADS is believed to be in South Korea. ADS basically adapts the popular Cold War SOSUS system (many powerful listening devices surrounding the major oceans, and analyzing the noises to locate submarines) developed by the United States. ADS consists of battery powered passive (they just listen) sensors that are battery powered and deployed by ship along the sea bottom in coastal waters. A fiber optic cable goes from the sensors (which look like a thick cable) back to shore, where a trailer containing computers and other electronics, and the ADS operators, runs the system. ADS has done well in tests, but it has never faced the North Korean mini-subs.


'Nothing amateur' about narco submarine.

A peek inside craft that can hide 7 tons of cocaine reveals surprises.




Experts have studied the narco submarine, which sits in Guayaquil, Ecuador. Painted a camouflage pattern of blue, black and gray, it is believed to be able to submerge about 50 feet. The only narco submarine ever captured — a 73-foot-long camouflaged vessel capable of carrying at least 7 tons of cocaine while cruising stealthily beneath the ocean's surface — sits raised on concrete blocks in a South American seaport. Its belly is caked with grime. Its hatch is open. Many of its secrets are no more. In the seven months since the game-changing discovery of the submarine, built by drug traffickers in a covert shipyard deep in the Ecuadorean jungle, naval experts from multiple countries have studied the vessel.  Their conclusion: It is the "real deal" — fully capable of making multiple journeys to North America. "There is nothing amateur about it," said Jay Bergman, the U.S. Drug Enforcement Administration's chief of the Andes region. "It is everything it is supposed to be. It is a bona fide long-range, fully submersible craft." The journey would have been tough but profitable for the sub, which has no name and was caught in July before its maiden voyage. Seven tons of pure cocaine would easily be worth $100 million in Texas. That's 20 times the estimated $5 million cost of building the sub. "It wasn't the Love Boat," Bergman said. "This is about getting black-market cargo from Point A to Point B … just trying to make sure they survived the journey and reaped the bounty." There is no galley or bed, just a small porthole and toilet to accommodate a crew of four or five. A commercial fish-finder device was mounted on the front to allow a pilot inside to see what was ahead.

Unanswered questions.

Officials said the most likely travel route for the sub would have been to sneak north along the Pacific coast and unload its illicit cargo during at-sea rendezvous with boats. The cocaine would be taken ashore to Central America or Mexico, where it would be smuggled over land into the United States. The sub is far smaller than military subs but adds a new dimension to the longtime cat-and-mouse game of trying to catch large loads of cocaine leaving South America via ships and planes. Officials are poring over the possibilities that come with a criminal organization having the contacts and ability to build a real sub. "The U.S. military is taking this threat very seriously and thinking through all the implications of this sort of platform," said Laurence McCabe, a U.S. Naval War College professor of national security affairs specializing in Latin America.  And if the submarine could carry drugs, he pointed out, it could carry terrorists. Among the most important questions not yet answered: Who designed the sub, and who were the naval mercenaries ready to pilot it? "They have now entered into a world of fairly elite, specialized skill sets, which are much easier to track and identify," McCabe said. "They are innovative people, and they are smart, but at some point you run into a technology wall and need to bring in special people." The vessel, which was captured in a brackish tributary leading to the Pacific Ocean, has since been towed to Ecuador's largest city, Guayaquil.  It was lifted from the water and placed on a pier, where it remains in Ecuadorean government custody.  It is painted a camouflage design of blue, black and gray - perfect colors for use on the high seas when hiding from government ships and planes that hunt traffickers.  McCabe, who has not been aboard the sub but shared his expertise with the Houston Chronicle, said from photos it looks like it would require about six people to operate for any significant distance. He also said it likely would have been able to travel about 20 knots per hour for up to an hour, but would have to slow to about 5 knots for more extended under­water travel. The faster it travels under­water, the more battery power it needs. The more it uses batteries, the closer it has to come to the surface to recharge them.  The U.S. government worked with Ecuador and Colombia to locate and capture the sub near the Ecuador- Colombia border, where it could only be reached by boat, said one U.S. official. No drugs were found onboard and not a shot was fired as soldiers and police swarmed it. One person was arrested nearby.

Race against time.

The remote region has a reputation as a no man's land. The official, speaking on the condition of anonymity, said it was found after a desperate race against time to locate the sub before it could put to sea. All told, about 150 Ecuadorean police and military personnel closed in on the sub, but by the time they got there, the culprits were gone. "Once you bring all those cops and military into an area for an operation, the word gets out," said the official. They waited for high tide to have the sub towed by a boat out to the Pacific. From there, it was tied to an Ecuadorian navy ship. The submarine is outfitted with a diesel-electric power system, according to the DEA. That includes twin diesel engines and more than 100 suitcase-size batteries.

7-ton payload.

The craft is built chiefly with fiberglass over a wood frame, which keeps it light and buoyant. It is believed to be able to submerge about 50 feet below the surface - deep enough to hide yet shallow enough to avoid crushing pressure. The cargo bay toward the front is big enough to hold about seven tons of cocaine.  Such a payload is staggering when compared with the 622 pounds of cocaine caught all of last year by Customs and Border Protection inspectors in El Paso. Lothar Eckardt, the director of the National Air Security Operations Center for CBP in Corpus Christi, said the sub is a "game-changer." The agency deploys P-3 Orion aircraft off the coasts of Central and South America to hunt for smugglers, who have previously taken to using hybrid boats that look like submarines but ride low on the surface without being able to fully submerge.  "It is a game-changer, but we are the United States of America, and we will do what it takes to find these things," Eckardt said. "Once you get into this sub game, there are a lot of people who get involved. "This is a legitimate threat." The official who spoke to the Chronicle said there is no way to know how many other narco subs are out there. "The fact is (they) found one," the official said. "The probability is so remote, that the only one ever built, only one near completion and the only one about to get under way is the one (they) found.


Greek officials received EUR 55 million in German bribes for submarines.

German submarine maker the HDW company spent 55 million euros on bribing Greek officials, the weekly German magazine Der Spiegel reports.  According to the magazine, in 2000-2002, the company had a group of managers, who received money to bribe Greek officials in order to obtain profitable contracts.  The bribing resulted in contracts for the construction of four submarines and the overhaul of three others. Among the Greek officials involved in those bribes the magazine names former Defense Minister Akis Tsohatzopoulos.


Submarine secrets.

Russia is creating a new conventional submarine, which will be equipped with a unique engine that will enable the vehicle to compete with nuclear-powered submarines in terms of speed and efficiency. Igor Kurdin, a St.Petersburg-based defense expert, touts the engine’s sophisticated characteristics which he says will add significantly to the submarine’s capacity. "Equipped with the so-called closed circuit engine, the vehicle will replace diesel-electric submarines and can be used in the Baltic and Black Seas, as well as the Pacific and Arctic Oceans, Kurdin says. The goal, he adds, is to spot and destroy enemy nuclear-powered submarines, which may well prove to be an easy task given the new sub’s high speed, quietness and advanced radar equipment." In the Soviet Union, the further development of conventional submarines came amid efforts to build a nuclear-powered submarine fleet, which was created in the late 1950s, Kurdin explained. "We have built Russia’s first conventional submarine, equipped with a closed cooling circuit engine, Kurdin says. The hope is that significant state funds will be allocated for the project, which will enable us to create more such submarines in the future," Kurdin concluded. The federal program stipulates the allocation of more than 4.5 trillion rubles for the modernization of the Russian Fleet, which will soon get a total of eight Borey-class nuclear-powered submarines, including the Yuri Dolgoruky, and the Vladimir Monomakh.  All the Borey-class strategic nuclear-powered submarines are designed to carry the Bulava sea-launched ballistic missiles.


Russian Navy to receive new nuclear attack submarine by yearend.

The Russian Navy will receive a new Graney class nuclear-powered multipurpose attack submarine by the end of 2011, a spokesman for the Malakhit design bureau said on Monday. Construction of the Severodvinsk submarine began in 1993 at the Sevmash Shipyard in the northern Russian city of Severodvinsk but has since been dogged by financial setbacks. It was floated out in June last year. "The submarine is undergoing harbor trials at the Sevmash Shipyard and is getting ready for sea trials in May," the official said. "It should enter service with the Russian Navy by the end of this year." Graney class nuclear submarines are designed to launch a variety of long-range cruise missiles (up to 3,100 miles or 5,000 km), with conventional or nuclear warheads, and effectively engage submarines, surface warships and land-based targets. The submarine's armament includes 24 cruise missiles and eight torpedo launchers, as well as mines and anti-ship missiles. In 2009, work started on the second sub of the Graney class, the Kazan, which will feature more advanced equipment and weaponry.


Iran Navy designing new medium, heavy class submarines.


Mansour Maqsoudlou of the Navy says Iran is currently designing multi-purpose submarines. Fateh submarine of medium class and Besat of heavy class are currently under construction in the country, Maqsoudlou added. He went on to say that Iran is working on another project called Mouj 2 which will soon join the Iranian Navy fleet. The project has surface and air radar systems.


Bulgarian Navy Set to Discard Submarine Force.


Bulgaria: Bulgarian Navy Set to Discard Submarine Force

Bulgaria’s armed forces will most likely do away with their submarine unit, according to Defense Minister Anyu Angelov. According to the Minister, the life of the only operational Bulgarian submarine “Slava” (i.e. “Glory”), has expired, and it will probably be retired in the coming months which will mean shutting down altogether Bulgaria’s submarine force. “Calling it a submarine force is too strong because any such unit must include at least two vessels. As you know, we have only one submarine. Its life has expired, and thus the submarine component of the Bulgarian Navy probably won’t exist any more,” declared the Defense Minister in Varna where he observed the international naval drills call “Breeze/Sertex 2010.” Bulgaria’s submarine force was formally set up as an individual unit during World War I, in 1916. After the end of the war, however, it was shut down as part of the provisions of the Treaty of Neuilly-sur-Seine of 1919 in which the Allies banned Bulgaria from having submarines. In 1954, the Soviet Union gave Bulgaria three submarines, and in 1958, two more. The Slava submarine was one of the two presented in 1958 and just turned 42. Even though it is deemed operational, it is in a deplorable condition and can only go under water for short intervals of time. The only other Bulgarian submarine that was operation in the recent years was the Nadezhda (i.e. “Hope”); it has practically been retired for ten years because it lacks a battery. At the beginning of 2009, the Bulgarian Navy considered turning it into a museum. The mid 1980s, and especially 1983-1985 were the “height” of the Bulgarian submarine force with four fully operational submarines. Two of them were retired immediately after the fall of the communist regime in 1989 because of lack of funds. In August 2009, the Bulgarian Navy celebrated with an open-door day 55 years since the restoration of its submarine force. In 2007, the general staff of the Bulgarian Navy promised that its modernization strategy will provide for purchasing two new submarines, the first of which was supposed to arrive in Varna in 2012. However, these plans have seen little development. Speaking in Varna on Friday, Bulgaria’s Defense Minister Angelov declared that the army, the air force, and navy must restructure in a way that would allow them to carry out their tasks in spite of any temporary budget constraints. He revealed that in changes in the structure of the three types of armed forces will be made public in September, and that they will be decided by the commanding staffs of each of these. “The three types of military forces will continue to exist because they feed the battle spirit of the Bulgarian Army,” Gen. Angelov said.


Brazil goes nuclear.

Brazil is building nuclear attack submarines that promise to dramatically alter the balance of power off the South American coast.

Brazil nuclear submarine falkland islands 2011 07 14


It’s a British admiral’s nightmare scenario: In the not too distant future, a nearly bankrupt Argentine government invades the oil-rich Falkland Islands. For the second time in half a century, Las Malvinas — the islands all of Latin America regard as a stolen piece of Argentina — spark a war.  With budget cuts, the Brits have no aircraft carrier. Across the Atlantic, Brazil does have one, the Sao Paulo, along with a fleet of nuclear-powered attack submarines being built in partnership with Argentina. These weapons give Brazil the ability to impose an updated version of the Monroe Doctrine on regional waters. Call it the "Lula Doctrine." With its new confidence and military ambition, Brazil is a vocal advocate of Argentina’s claim on Las Malvinas. While few can imagine Britain and Brazil ever coming to blows, pieces of that nightmare scenario are starting to take shape. In 2009, Brazil announced plans to build a fleet of five nuclear attack submarines. Expected to start entering service in 2016, the submarines promise to dramatically alter the balance of power in the South Atlantic. (Currently, only the U.S., China, Russia, India, the U.K. and France operate nuclear-powered warships, the vast majority of them submarines.) The last time this scenario played out, Britain won the day. Back in 1982, when the Argentine junta led by Gen. Leopoldo Galtieri invaded the islands, Britain mustered a small but powerful fleet of aircraft carriers, submarines and surface ships to support a Royal Marine landing force that retook the islands. The retaking of the Falklands became emblematic of then-Prime Minister Margaret Thatcher’s determination that the once mighty British military not sink to third-class status.  Yet it also left a deep scar on the Latin American psyche. Brazil and other Latin American countries backed Argentina during the war but had little real ability to help militarily. In particular, the region never forgot the single most deadly action of the war, the sinking of the Argentine cruiser General Belgrano, a hulking relic of World War II, by a British nuclear attack submarine, killing 323 sailors.  Until recently, the Falklands conflict was regarded by most experts as unlikely to spark further trouble. But the discovery of oil in the North Falklands Basin in 2007 changed this. Combined with Argentina’s near perpetual state of fiscal distress and Brazil’s new assertiveness on the world stage, sensitivities over the disputed islands have risen.  In January, for instance, Brazil refused a small British warship, HMS Clyde, permission to dock in Rio de Janeiro. Neighboring Uruguay turned away the British destroyer HMS Gloucester in 2010. In Britain, meanwhile, the commander of the 1982 Falklands fleet, Admiral Sir John Woodward, published an op-ed in June warning that current defense cuts likely would leave the Falklands helpless in the face of a new Argentine invasion, leading to political pressure to reinforce the British garrison. But Brazil’s submarines change the naval balance of power in the region even more dramatically than Britain’s own defense woes. British strategists worry that Brazil’s may now impose its own version of the U.S. Monroe Doctrine on the region’s waters — in effect, demanding that foreign powers simply steer clear of its backyard as the U.S. did in the 19th and 20th century. Late last year, Brazil signed a deal with a French defense contractor for help constructing the first of the five boats. This follows a 2008 deal with Argentina to jointly develop the nuclear reactors which will power the vessels. Brazilian officials have been careful not to portray the subs as a response to any outside threat as they continue to support Argentina’s Malvinas claim in international bodies. Instead, the subs have been characterized as a way to secure the enormous “pre-salt” offshore oil fields discovered by the country over the past several years. President Luiz Inacio “Lula” da Silva, who led the push for the nuclear sub program, said before leaving office that the subs were “a necessity for a country that not only has the maritime coast that we have but also has the petroleum riches that were recently discovered in the deep sea pre-salt layer.”


Are the dumped nuclear reactors leaking?

Norway, Russia send joint expedition to the dump sites for submarine reactors in the Kara Sea this summer. Will it be safe to lift the old reactors and bring them safely onshore? A total of 16 naval reactors were dumped east of Novaya Zemlya during the Soviet period. Reactors were dumped because accidents with them caused high levels of radiation. Naval yards in Severodvinsk and along the coast of the Kola Peninsula wouldn’t dare to keep them stored near populated areas, nor less to decommission them in a proper way. The “easy” solution was simply to dump them in remote Arctic waters. Most scaring are the six reactors that were dumped with their highly radioactive spent nuclear fuel still onboard. In the early 90ties, several expeditions with Norwegian and Russian radiation experts onboard sailed to the dump-sites in the Kara Sea. Their findings were just partly without worries. Some samples indicated small leakages in the near vicinity of the reactors, while some reactors were not found. The last joint Norwegian, Russian expedition to the Kara Sea took place in 1994. Since then, only Russian scientists have been given permission to enter the dump-sites areas. This week, the International Atomic Energy Agency  (IAEA) holds a workshop in Oslo with participants from several of the countries involved in nuclear safety operations in northwest-Russia. The objective is to initiate further investigation on sunken submarines and reactors in the Arctic Oceans and strategies to solve the problems. The Norwegian Radiation Protection Agency reports today that the goal is to send a new joint expedition to the sites of dumped reactors and sunken submarines. Such expedition will take place later this year, and is supposed to include Norwegian and Russian team members in addition to experts from IAEA. The big question is: Will it be possible to lift the sunken reactors and bring them safely back to a naval yard without releases of radioactivity? In the 90ties nobody demanded to lift the Kara Sea dumped reactors. Those days, experts and the public were far more concerned about the 120 rusty nuclear powered submarines that were laid-up at the different naval bases and shipyards on the coast of the Kola Peninsula and in Severodvinsk. Today, most of the old laid up subs are decommissioned and their reactors are safely stored onshore in the Saida bay, west of Murmansk. In addition to the 16 reactors dumped in the Kara Sea, the expedition this summer will examine the radionuclide situation around the K-159, a old nuclear powered submarine that sank outside the inlet to Kola bay in August 2003. K-159, with its two reactors with spent nuclear fuel, lays on the seabed in one of the most important fishing grounds of the Barents Sea. Another interesting sunken submarine is the Komsomolets, that sank 160 kilometres south of the Bear Island in April 1989. That submarine has one reactor and two plutonium-bombs onboard, but are far to deep to ever be lifted.


Pakistan plans to acquire 6 submarines from China.

After inducting advance fighter jets from China, Pakistan plans to buy six state-of-the-art submarines from the neighbouring country in a bid to boost its under-sea warfare capabilities.  Islamabad is planning to buy six submarines outright with options of joint development of conventional submarines with China, The Express Tribune reported.  The newspaper did not mention the class of submarines being sought by Pakistan saying merely that Islamabad wanted advanced under-sea vessels with air independent propulsion (AIP) system, which would give them capabilities to stay submerged longer and operate noiselessly.  The Defence Ministry has asked the federal Cabinet to approve the purchase of Chinese submarines to counter “emerging threats” faced by Pakistan, the paper said.  Pakistan has a total of five active diesel electric submarines plus three midget submarines. While the three submarines are of German SSK class, Islamabad had recently inducted two French Agosta class ones.  With attempts to acquire AIP technology, Islamabad would be in race with New Delhi, which plans to arm its French Scorpene submarines with the technology but only by 2013.  Pakistan’s Defence Ministry informed the Cabinet that the country’s Navy is facing a “critical force imbalance” in terms of the number of submarines and ships in its fleet.  The “capability gap is widening exponentially with the passage of time”, the report said.  The Navy plans to acquire the six AIP conventional submarines that can operate in a “multi-threat environment under tropical conditions” and are capable of launching torpedoes and missiles, the Business Recorder daily quoted official documents as saying.  A protocol for joint development and co-production of submarines by the Pakistan Navy and China Shipbuilding and Offshore Corporation will be signed shortly after approval by the federal Cabinet, the paper said.  In view of “urgent naval requirements”, the issue of acquiring Chinese submarines was part of the talking points for President Asif Ali Zardari’s visit to China in 2009, media reports said.  The matter was also discussed during Chinese Premier Wen Jiabao’s visit to Pakistan in December 2010, the reports said.  The Cabinet has been told that Naval Headquarters had pursued the purchase of submarines with Chinese authorities, who have assured Pakistan of their “firm support” for the submarine project.  Under the proposed protocol, four submarines will be constructed at a Chinese shipyard and the remaining two in Pakistan.  Co-development and production will include joint development, training of Pakistani personnel, upgrades of Pakistan Navy’s shipyard and other related aspects.


Agosta Submarine Lies


ISLAMABAD: As public pressure in France mounts on President Nicolas Sarkozi to testify over alleged corruption in the sale of French submarines to Pakistan in the mid-90s, the then Director General Naval Intelligence (DGNI) of Pakistan Navy has offered help to Islamabad and Paris to book the corrupt and bring back the looted money to Pakistan. Talking to The News, former DGNI Commodore Shahid Ashraf, who by his own account was tortured, harassed and put under illegal custody by the sleuths he once commanded and prematurely retired from the service “for knowing too much about the commission mafia in defence forces”, said that he was willing to cooperate with the Pakistani as well as French authorities. “I have a lot to share with them about the kickbacks in the Agosta submarine deal,” he insisted. Ashraf, in a recent interview with this newspaper, disclosed certain details of the Agosta submarine deal and revealed while the deal had led to the removal of the then Chief of Naval Staff (CNS) Admiral Mansurul Haq and the framing of a corruption reference against Benazir Bhutto and Asif Ali Zardari but those mighty and powerful in the navy, who made millions of dollars from the deal, were never held accountable. The cover-up in the submarine deal, according to the former DGNI, was meant to save the skin of many in the Pakistan Navy. To force his silence, he said, he was maliciously charged for getting Rs1.5 million from a naval officer, who was alleged to have got illegal gratification and kickbacks from foreign suppliers of the naval vessels, etc., but was ‘interestingly’ made an approver against the DGNI. On the contrary, a list of naval officers, who were alleged to have received kickbacks, were never touched. Instead, they were promoted as rear admirals.


Rumors Circulate About Radiation Leak by Chinese Sub.

Rumors are spreading quickly that radioactive materials were accidentally leaked from a state-of-the-art Chinese nuclear submarine moored in Dalian Port in Liaoning Province in the northeastern part of China.  The rumor was first reported on Saturday by, a website for overseas Chinese, before it was picked up by Sina Weibo, a Chinese microblogging site similar to Twitter.  Citing People's Liberation Army sources in Dalian, reported that there was an accidental leakage of radiation when engineers from a Chinese electronics company were installing equipment on the submarine.  Boxun reported that the accident happened suddenly, and that Chinese authorities had sealed off the area while an investigation was under way, while taking steps to ensure news of the accident did not spread. The Chinese media and government have so far refrained from commenting on the rumors, which have stoked fears among netizens.  China possesses around 70 submarines. Six of them are nuclear-powered and five are part of the North Sea Fleet deployed around Bohai Bay. Only two Chinese nuclear submarine ports in the North Sea Fleet have been identified by outsiders. One is in Dalian and the other is in Qingdao.  In 2007, a U.S. spy satellite captured photos of a Chinese Jin-class nuclear submarine moored in Xiaopingdao, an island near Dalian. The submarine at the center of the latest rumor is a Jin-class nuclear sub, which measures 133 m in length and has a displacement of 8,000 tons. It is also equipped with intercontinental ballistic missiles with a range of 8,000 km. Two nuclear submarines have been commissioned so far, but three or four more are being made, according to military sources.


N.Korea Builds up Submarine Force.


A North Korean 300-ton Shark-class submarine which infiltrated into waters off Gangneung, Gangwon Province in September 1996

A North Korean 300-ton Shark-class submarine which infiltrated into waters off Gangneung, Gangwon Province in September 1996. North Korea is building up its submarine force, deploying new Shark-class K-300 submarines with better performance, a longer body and higher underwater speed than the old model which infiltrated South Korean waters in 1996. A South Korean government official said Sunday, "We've confirmed U.S. satellite images and other intelligence that the North has been building and deploying new Shark-class submarines for a few years now. They're about 5 m longer than the old 34 m-long model and capable of traveling submerged more than 10 km/h faster." The North has about 70 submarines and submersibles. The Shark class, which accounts for about 40 of them, is its main submarine force.

Submarine situation dire.

A Guppy-class submarine that has been in service for 66 years, front, and two Dutch-made Hailung-class submarines that have been in service for 25 years are pictured at the Tsuoying naval base in Greater Kaohsiung yesterday. Amid the lack of consensus on whether to procure or develop submarines, the navy’s lagging capabilities have become increasingly severe, a military analyst said yesterday. Jyh-Perng Wang, associate researcher at the Association for Managing Defense and Strategies, said the nation’s Hailung-class Sea Dragon and World War II-era Guppy-class submarines were overburdened with numerous drills and battle missions, spending as much as 27 days per month at sea. The two Guppy-class are now used solely for training, -leaving only two Hailung-class subs for actual missions. Wang said physical and mental stress in the navy, coupled with a “no hope for the future” mentality, could result in a wave of retirement among senior officers. The 70-year-old Guppies, known as Sea Lion-class submarines, are in poor shape and require sustained maintenance, which is why every time the two submarines go out to sea, the Naval Command and Fleet Command are extremely nervous. Crew on the subs are also constantly worried about accidents, which is why the burden now primarily falls on the two Dutch-made Hailung-class subs. Sources have said that aside from battle missions, the two active submarines are responsible for “no-warning” and “warning” sea shark drills (or marine patrol operations), routine training assessment exercises by the fleet command, mine deployment and countering, as well as participation in the annual Han Kuang series of exercises. These drills take months to plan and execute, which could account for the exhaustion among officers. Wang said that after more than 20 years of use, the Hailung-class subs were also getting old. When they entered service, they provided an edge against the vessels deployed by the People’s Liberation Army Navy, but now that China’s Song-class attack submarines were fitted with silencer tiles, it was time for the navy to retire its “-stegosaurus-class” subs and modernize. Wang said he was concerned that salaries of between NT$30,000 and NT$40,000 per month offered by the navy were insufficient to retain personnel, since submarine crew are constantly under a lot of stress. The wave of senior officers who have retired early shows that the officers had lost confidence in the submarine fleet, which was a great loss for the navy.


Russia scraps Cold War-era Typhoon submarine.

Russia is to scrap its legendary typhoon class nuclear-powered submarine, the deadly Soviet-era vessel that inspired the Hollywood blockbuster The Hunt for Red October.

Russian submarine infographic


The decision, which was disclosed by military sources in the daily Izvestia newspaper, marks the end of an era that will see the three remaining Typhoon class submarines that remain in service in Russia's Northern Fleet cut up and turned into scrap metal by 2014. The giant Typhoon-class submarine was a fixture of the Cold War and at 562 feet long and 80 foot wide was the biggest submarine ever built.

It was also one of the deadliest and was able to launch up to twenty intercontinental ballistic missiles carrying as many as two hundred independently targeted warheads (ten warheads per missile). But in recent years, the under funded Russian navy has struggled to keep the three remaining submarines fully operational with only one of the three said to routinely be carrying nuclear weapons, while the other two are said to carry conventional weapons only. It was the first Soviet nuclear submarine to have the capacity to launch a missile from beneath the polar ice sheet without being detected on satellite and its engines were much quieter than its predecessors, making it much tougher to track.  The legendary submarine appears to have become a victim of post Cold-War realities however. Three have already been scrapped to comply with nuclear disarmament commitments, and Russian navy chiefs now believe that the three remaining vessels are no longer needed either. The main reason is that a new smaller generation of nuclear submarine is in the process of being rolled out (the Borei) which is considered to have superseded the giant Soviet-era vessel. The new subs are cheaper to run, require far fewer crew, and have been specially designed to carry Russia's new generation of Bulava sea-launched nuclear missiles. In contrast, two of the three older Typhoon-class subs need to undergo expensive conversion work before they can even fire the new missiles.  The old subs are also said to cost at least £6 million a year in running costs that is deemed too high.  Under the so-called new START nuclear arms reduction treaty that Russia and the United States signed last year, Moscow is only able to deploy a maximum of 1,550 nuclear warheads anyway. The three ageing Soviet-eras are capable of carrying 600 warheads between them and Russia is said to be keen to use other more modern launch vehicles to fill its quota (including silo-based ICBMs and strategic bombers).

Three of four Albanian submarines for scrap metal.

The Albanian submarines will not be seen anymore at the Pashalimani military base. Three from the last four Albanian submarines were transported to the melting furnaces of the Elbasan Metallurgy. These submarines were Albania’s pride during the Cold War. They arrived in the country after signing the Warsaw Treaty and were proposed to turn into a museum. The Albanian-Russian joint military base of the 50s had 8 submarines, four of which left when Albania abandoned the military alliance of the communist countries. The submarines operated for many years, but remained immobilized after 1997, when they were damaged as badly as they could sink. The submarines were anchored at the Pashalimani base, for not moving anymore until the last days of their lives, when they were cut to pieces and were transported to the Elbasan Metallurgy. On May 2010, the Albanian government announced the tender for their sale, with a value of 34.3 million ALL, and the operation for removing them from water ended only in the recent days. The market value of the steel only, because the copper and alluminium is higher, is 78 million ALL. Dozens of trucks went in and out the city of Vlore for several days, and the last pieces were transported this Friday, September 23rd. The heavy equipments that were used for cutting the submarines are still at place, where they also cut a series of other heavy ammunitions, such as torpedoes, marine bombs and heavy weapons, now out of order. The submarines weighted 650 tons each and were mainly made of steel and copper. The names of the destroyed submarines are “Tufani 332”, “Vetetima 334” and “Rrufeja”. The “Submarine 105”, much used by the communist propaganda, was not destroyed.

The last accident of Soviet nuclear fleet.

The accident was the latest in the nuclear submarine fleet of the USSR and took place immediately after the coup, exactly 20 years ago. "" tried to reconstruct the events with a member of the Supreme Council who Ruslan Khasbulatov ordered to investigate the accident. "On September 27, 1991, during a training launch in the White Sea at the" TK-17 ""Arkhangelsk," a training missile exploded and burned in the silo. The blast took off the silo roof, and the missile was thrown into the sea. During the incident the crew was not injured. The boat had to undergo a small repair ... " this is the only phrase that pops up in all the search engines when trying to find more information about the accident. "TK-17" is the fifth of the six heavy nuclear-powered submarines of Project 941 "Typhoon" produced in the Soviet Union (this project is also called "Shark"). These are the largest submarines in the world. The author of these lines a few years ago happened to hear about that accident firsthand. Rear Admiral Vitaly Fedorin, who at the time of the accident was at a supporting vessel, said: "I saw everything that happened from outside. During a prelaunch a ballistic missile exploded. The cover of the silo flew to an unknown destination, and the rubber coating of the outer hull of the boat was burning. The commander of the" Shark," Captain of the 1st Rank Grishko, acted professionally. He promptly countersunk the giant submarine to a periscope depth, knocked down the flames and flushed away the remaining solid rocket fuel that can burn in the water from the boat. Fortunately, none of the sailors were injured. Later the silo was welded and has never been used, but the boat has long remained in battle formation. It was the only accident with missiles on ships on such a project. It did not cause any damage to durable and lightweight housing, and there were no casualties. The submariners paid tribute to the designers - Severodvinsk Shipyard Sevmash - for the safety features they designed for the ship." That accident had no adverse environmental, economic or any other consequences. According to a member of the Supreme Council of the RSFSR Albert Butorin who now resides in Severodvinsk, Arkhangelsk region, a real catastrophe was prevented by the dedication of the nuclear submarine commander: "In 199-1993, Arkhangelsk region was the area of ??my responsibility as a member of the Supreme Council of Russia. On October 1, 1991 I was summoned by the chairman of the Supreme Council Ruslan Khasbulatov: "I have been told that in the White Sea an explosion of a submarine with nuclear weapons on board was miraculously prevented. Now the boat is stationed in Severodvinsk, where deputy commander of the Northern Fleet Vice-Admiral Poroshin has arrived. You need to analyze the situation together and report to me urgently. Please go there immediately!" Heavy nuclear submarine "TK-17" was built in Severodvinsk at Sevmash and handed to the Navy on December 15, 1987. Its main armament was 20 intercontinental ballistic solid propellant missiles. In Severodvinsk the nuclear submarine damage was surrounded by such secrecy that even the then Mayor Lyskov was not allowed on board. Together with Poroshin we walked through all sections of "TK-17", chatted with the crew and their physician Pugachev, inspected the damage to the upper deck, covered by melted missiles. The commander of the "TK-17" Captain of First Rank Igor Grishkov was completely exhausted in those days. He reported that on September 27, 1991 at the site in the White Sea, when a training missile was launched there was an explosion in the silo whose cover flew far out to the sea. The boat surfaced, and when he saw a fireball over the deck, Grishkov shot down the flame by dipping into a mass of sea water, and then surfaced again. This maneuver saved an underwater nuclear-powered ship from a nuclear weapon explosion with hellish consequences. Then I offered Grishkov's candidacy for the title of a Hero of the Soviet Union, but the country's leadership and the Navy chose to hush up the accident in order to ensure the secrecy surrounding the terrible consequences of a possible catastrophe. Back in Moscow, I reported everything to Khasbulatov and persuaded him not to raise the debate about this state of emergency at a session of the Supreme Council, because it could have led to a massive scandal, radio-phobia, capture of the security forces of the USSR by Yeltsin, the proclamation of the Russian North "a nuclear-free zone," shutdown of the nuclear test site on Novaya Zemlya and the main facilities in Severodvinsk, and the removal of a number of senior officers of the Navy from office, including the leaders of the USSR Ministry of Atomic Energy.

The case was limited by a promise of a Navy Commander Vladimir Chernavin that henceforth no ballistic missiles will be launched from the White Sea. The commander of "TK-17" Grishkov who saved the submarine from death and all the White Sea from an environmental disaster has never received the title of a Hero due to certain national interests and political considerations. However, his act was indeed heroic." In fact, this was not the last incident with the explosion of missiles experienced by an atomic submarine "Archangelsk." In February of 2004, under the program of large-scale trainings the Northern Fleet submarine "Novomoskovsk" ("K-407") was to launch an intercontinental ballistic missile. The launch has failed. The missile has crashed, and exploded after the release from the missile silo. Not far from the "Novomoskovsk" on board the nuclear submarine "Archangel" there was then-Russian President Vladimir Putin who observed the exercises. He personally saw the failed launch. The Navy failed to brag a successful launch for the President to see, but the world's press displayed the famous photograph of Vladimir Putin in a black submarine hat taken on board "Archangelsk." A few weeks later, on April 29, 2004, due to lack of ammunition submarine TK-17 "Arkhangelsk" was put in reserve. Currently the ship is waiting for a decision regarding either disposal or modernization under project 941U. It sits in the naval port of Severodvinsk, rusting and coming into disrepair. Yet, this is another story.

Submarine plan torpedoed.

Defence Minister Yutthasak Sasiprapa has rejected the navy's plan to pay 7.5 billion baht for six used submarines from Germany and questioned the cost-effectiveness and transparency. He said yesterday a defence scrutiny committee he appointed had resolved to return the project to the navy for review. Gen Jongsak Panichkul, adviser to the defence minister, is chairing the committee, which also includes former navy chief Adm Prasert Boonsong. "I want a review on the cost-effectiveness," Gen Yutthasak said. "The past government approved the establishment of a submarine fleet and the recruitment of personnel has been completed but transparent procurement has yet to be done." He said he was not concerned about the Sept 30 deadline that Germany had set for the navy to confirm the purchase of its used U206A submarines. He said the German navy could be asked to extend the deadline. "But if Germany refuses to extend the deadline, it will be up to the navy to propose submarines from any country for my consideration," the defence minister said. He is open to either new or used vessels. A navy source said the defence scrutiny committee had recommended submarines from Russia, China and South Korea. "The navy will let politicians make the choice," the source said. "It will just wait." He said the German submarines were the best choice in terms of practicality for study, training and price.

The Global Submarine Market 2011–2021.

Globally, the submarine market consists of 450 submarines operated by 41 countries. Some 154 submarines are to be procured up to 2021, costing a total of $186.3 billion. Most of the 41 nations are upgrading their fleets or adding to them as a result of rapidly changing defence requirements. The global market (annual value) stands at $16.4 billion and is set to increase to $18.2 billion by 2021. Regional hostility prevailing among Asian states is driving the submarine market, which is expected to cumulatively be worth US$44 billion across the forecast period, 23.6% of the total market. Brazil and Argentina are the main spenders in the submarine sector in Latin America, totaling US$8.6 billion, 4.61% of the total market. In the long term, continued changes in the costs of construction and the increasing number of nations interested in nuclear powered submarines will push up the average cost of a submarine. It is estimated that, on average, a submarine costs just shy of $1 billion.

-SSNs are expected to have the largest share of the total submarine market during the forecast period
-Market size of SSNs estimated at US$87.4 billion
-Market for ballistic missile submarines to record a CAGR of 4.83%
-Demand for diesel electric submarines expected to fall
-Mature Air Independent Propulsion systems seen as a must have capability
-Varying mission profiles demand multirole capability and multiple payloads
-Defense budget cuts across the world impede the growth of the global submarine market
-Detailed profiles of 20 leading submarine and related systems manufacturing companies across the world.

This report offers detailed analysis of the global submarine market over the next ten years, and provides extensive market size forecasts by country and sub sector. It covers the key technological and market trends in the submarine market. It further lays out an analysis of the factors influencing the demand for submarines, and the challenges faced by industry participants.

Royal Navy takes part in largest submarine rescue exercise.

Royal Navy personnel have joined 2,000 sailors from 13 nations for the world's largest submarine rescue exercise, off the south-eastern tip of Spain. The ten days of NATO Exercise Bold Monarch witnessed an international effort to bring trapped submariners from four boats to the surface. The exercise is run every three years to test the ability of allied teams - including the UK-based NATO Submarine Rescue System (NSRS) - to react to the two most terrifying words in a submariner's vocabulary: submiss and subsunk. This year rescue efforts focused on the western Mediterranean, just off Cartagena, with four diesel-powered subs from Portugal, host nation Spain, Turkey and, for the first time, Russia, 'bottoming' on the sea bed and awaiting rescue. Coming to their aid were mini-submarines, diving bells, divers, parachutists and medical specialists.  Submarine rescue vehicles from Italy, the USA, Russia and Sweden all deployed to the waters off Cartagena, plus the Faslane-based Anglo-French-Norwegian NSRS. They were joined by specialist divers and hyperbaric medical teams from France, Greece, Italy, the Netherlands, Spain, Sweden and Britain, charged with coping with challenging deep sea illnesses such as decompression. Finally, parachutists from Italy, Russia and the Royal Navy's Submarine Parachute Assistance Group also headed to Spain to leap out of aircraft and be the first on the scene to assist people who came up to the surface directly from their stricken boats: By their nature submarine operations are secret - with one exception: search and rescue. That brings together submarine communities from across the world, as this exercise shows," said Rear Admiral Ian Corder RN, Commander NATO Submarine Forces North.  The participation of the Russian Kilo Class boat 'Alrosa' particularly excited organisers and saw some historic link-ups, including the NATO and US rescue vehicles docking with the submarine 114 metres below the surface of the Mediterranean. "We've proved that we can 'mate' with four different boats from four different nations and we've shown that we can evacuate 70 people from a submarine within 24 hours - that covers almost all the non-nuclear submarines in the world," said Lieutenant Commander Stewart Little, the Royal Navy's rescue element commander overseeing the NATO submersible's missions.
Submarines are operated by more than 40 navies worldwide and, in addition to the countries participating in the exercise, numerous nations have sent observers to watch proceedings. Planning is already underway for the next Bold Monarch, scheduled for Polish waters.

Södermanland Class Submarines.

The Södermanland Class diesel-electric submarines are in service with the Swedish Navy. They were originally launched as Västergötland Class submarines between 1987 and 1990. "Södermanland Class is powered by a diesel-electric and Stirling AIP system." The Class includes two submarines, namely HMS Södermanland and HMS Östergötland. These two were relaunched as a new class during 2003-2004 after a major refit by Kockums. Södermanland Class subs are operated by the 1st Submarine Flotilla of the Swedish Navy. The class will remain in service until being replaced by the A26 submarines in 2018-19.

Södermanland refit.

Kockums began the refit of the Södermanland at its shipyard in Malmö, Sweden, in late 2000. The pressure hull was cut into two parts and a new section was attached between tower and tail to insert a Stirling air-independent propulsion (AIP) system developed by Kockums. The new section is fitted with two Stirling units, liquid oxygen (LOX) tanks and electrical equipment. The overall length of the submarine was increased from 48.5m to 60.5m by the insertion. The Swedish Navy subs are intended to operate mainly in more frigid northern waters. Operations in higher water temperatures will increase ambient temperatures and relative humidity on board. To overcome this problem, Södermanland Class is fitted with a completely new refrigeration system with heat exchangers in place of older direct seawater cooling systems. The Class is now ready to be deployed in international peacekeeping operations in warmer and saltier waters. The submarines also feature a new air-lock for divers. HMS Södermanland was relaunched in September 2003 and returned to service in mid 2004. HMS Östergötland was relaunched in September 2004 and returned to service in 2005. The upgraded submarines can be operated for another 20 years without further modernisation.

Command and control

The original command and control system onboard the Södermanland Class submarines was upgraded to current standards. In January 2006, the Swedish Government placed a contract with Saab to supply four SESUB 960 command and control systems for Södermanland and Gotland submarines. Södermanland Class is now equipped with SESUB 960 command and control system. SESUB 960 provides network enabled defence capabilities to the submarines.


Södermanland Class is armed with six conventional 533mm torpedo tubes and three 400mm bow torpedo tubes. The 533mm tubes can launch type 613 heavy-weight, anti-surface ship torpedoes. Type 613 can carry a 240kg warhead up to a range of 20km. The 400mm tubes can fire Type 43 lightweight anti-submarine torpedoes.


The existing spinning mass gyrocompasses on the submarines are being replaced with new inertial navigation systems. Kockums placed a contract with Northrop Grumman in March 2010 to upgrade the inertial navigation systems of two Gotland Class and two Södermanland Class submarines. Northrop's division, Sperry Marine, will deliver five mk39 mod 3C ring laser gyro (RLG) systems under the contract. Four units will be fitted to four subs of each class and one unit will be used for spares and training. The mk39 mod 3C is a high-performance inertial navigation system offering superior shock and vibration resistance. It feeds accurate geographic position information and attitude data to the SESUB combat management systems.


Södermanland Class is powered by a diesel-electric and Stirling AIP system integrating two Hedemora diesel-electric engines and two Kockums v4-275R Sterling AIP units. The AIP significantly increases the sub-merged endurance by acting as an alternative to battery power. It also reduces the noise levels created by the frequent battery recharge with diesel generators. "The Södermanland Class diesel-electric submarines are in service with the Swedish Navy."

Pure oxygen and diesel fuel are burned in a controlled environment for maintaining high pressure. The combustion products exhausted from the engine will have higher pressure than the surrounding seawater pressure and hence released without the need for a compressor. Cryogenic tanks fitted on the deck under engines are used to store liquid oxygen (LOX). The submerged endurance is determined by the amount of LOX stored in the submarine. The submerged endurance of a Stirling AIP powered submarine can be extended from days to weeks. The propulsion system provides a speed of 20kt dived.

Russia's gigantic Typhoon submarines to be scrapped.

The world's largest ballistic missile submarines of Project 941 Akula (Shark), known as Typhoon, will be decommissioned before 2014 and used for scrap metal, a source at Russia's Defense Ministry told the Izvestia newspaper. All three operating submarines of the project - Arkhangelsk, Severstal and Dmitry Donskoi - will thus be destroyed. The Dmitry Donskoi cruiser was previously used as the base for launching Russia's new Bulava ballistic missile. The decommissioning of the missiles will cost the Russian budget hundreds of millions of rubles, experts said. Defense officials said that it became impossible to use the above-mentioned submarines for intended purposes because of the Strategic Arms Reduction Treaty (START-3), which Russia had signed with the United States.  Specialists of Sevmash Enterprise (the maker of the subs) said that it could be possible to redesign the submarines to use them as undersea gas tankers or all-season marine freight vessels. However, defence ministry officials said that the cost for this work would be unreasonably high. It was Borei class submarines that ruined the career of the Typhoons, defence officials said. Borei is a new class of submarines, which Sevmash Enterprise currently builds. The new subs will be armed with Bulava missiles. The tests of Borei submarines ended successfully, which made the maintenance of bulky and more expensive typhoon submarines pointless. The crew of the Borei sub is 1.5 times smaller than that of the Typhoon. Maintenance costs also differ in Borei's favour. To crown it all, it is much more difficult to detect Borei submarines in the water, officials said. Officials representing the Defense Ministry also said that any work to redesign the submarines would cost tens of billions of rubles. Therefore, it would be more reasonable to spend this money on building new vessels, they said. Specialists of Sevmash Enterprise said, though, that the Typhoon subs could be transformed into undersea tankers and freighters to transport liquefied gas, oil and cargoes for polar ports. "This reconstruction may not cost that much," representatives of the enterprise said. Alexander Konovalov, the President of the Institute of Strategic Estimations, shares a different point of view. According to him, the era of Typhoons is gone for good. "This is a gigantic thing. It is the largest sub in the world, and it is very expensive in its exploitation. Moreover, there are no missiles for these subs," he said. The fate of gigantic submarines was determined by the START-3 Treaty, which was signed by Russian and US presidents in the spring of 2010. The treaty restricted the strategic arsenals of the two countries to 1,550 nuclear warheads. Russia's Project 955 Borei and 667BDRM Dolphin submarines may carry over 1,100 nuclear blocks. The remaining part can be used by long-distance aviation and Special Purpose Missile Troops. One Typhoon class submarine is capable of carrying of only 120-200 nuclear warheads. Russia's Defense Ministry has already decommissioned three of the six Akula submarines before in accordance with the START-2 Treaty. Russia decided that it was too expensive to maintain the battle capacity of those submarines. Each cruiser required nearly 300 million rubles a year. The decommissioning process took place as follows. Spent nuclear fuel was unloaded from the reactors. The equipment was dismantled afterwards. The subs were then transferred to the dry dock. In the dock, specialists cut out the reactor compartments from the subs. The compartments were subsequently transferred to long-storage facilities in the Murmansk region. The utilization of one cruiser cost $10 million. Two million dollars of the amount were assigned from the Russian budget. The remaining funds were provided by the United States and Canada.

The Project 941 or Akula, ("Shark") class submarine (NATO reporting name: Typhoon) is a type of nuclear-powered ballistic missile submarine deployed by the Soviet Navy in the 1980s. With a submerged displacement of 48,000 tons, the Typhoons are the largest class of submarine ever built, large enough to accommodate decent living facilities for the crew when submerged for months on end. The source of the NATO reporting name remains unclear, although it is often claimed to be related to the use of the word "Typhoon" by Leonid Brezhnev in a 1974 speech while describing a new type of nuclear ballistic missile submarine. Soviet doctrine for these vessels was to have them launch SLBMs while submerged under the arctic ice, avoiding the traversal of the GIUK gap to remain safe from the enemy attack submarines and anti-submarine forces. Technically Typhoons were also able to successfully deploy their long-range nuclear missiles while moored at their dock.

The Borei class is a class of nuclear-powered ballistic missile submarine produced and operated by the Russian Navy. The class is intended to replace the Delta III, Delta IV and Typhoon classes now in Russian Navy service. The class is named after Boreas, the North wind. The sub is 160 meters long; its maximum displacement measures 24,000 tons. The submergence depth - up to 400 meters. The crew - 107 people.

Sevmash currently builds three Borei class submarines: Alexander Nevsky, Vladimir Monomakh and Saint Nikolai. The construction of the first submarine - Yuri Dolgoruky - began on November 2, 1996. The sub was launched on February 12, 2008. Alexander Nevsky was launched on December 6, 2010. The sub is to be passed into service in 2012.

Russian submarine to join NATO exercise for first time

A Russian submarine will take part in the world's biggest submarine rescue exercise with its former Cold War foe NATO next week, the Western military alliance said Friday. The Russian submarine, the first to participate in any NATO exercise, will drop to the bottom of the Mediterranean along with Portuguese, Spanish and Turkish submarines and will await listless for a rescue mission off the coast of Cartagena, Spain. Around 2,000 military and non-military personnel as well as ships and aircraft from more than 20 nations will take part in the exercise, dubbed Bold Monarch 11, that will run from May 30 to June 10. Held every three years, it "is the world's largest submarine rescue exercise," said a statement from NATO's SHAPE allied military headquarters based in Mons, Belgium. "The exercise is designed to maximise international cooperation in submarine rescue operations -- something that has always been very important to NATO and all the submarine-operating nations," it said. The inclusion of a Russian submarine in the exercise comes amid a warming of ties between Moscow and the 28-nation alliance, nearly three years after Russia's war with Georgia had sparked tensions between the two sides. The United States, Russia, Italy, Sweden are contributing submarine rescue vehicles and sophisticated gear to clear debris. France, Norway and Britain will use a jointly owned rescue system. Aircraft will deploy from Italy, Britain and the United States to help locate the submarines and drop parachutists to provide emergency assistance. The vast exercise will culminate with a 48-hour coordinated rescue and evacuation of 150 survivors, including casualties, from a submarine acting in distress. Russia suffered a traumatic submarine accident more than 10 years ago, when the Kursk sank in the Barents sea, killing all 118 sailors inside. International search operations had taken a week to start after the August 12, 2000, incident.

Pakistan Government to Purchase French Agosta Submarines.

The Pakistan Government had decided to purchase French Agosta submarines against the recommendation of the Pakistan Navy, the then Naval Chief Admiral (retired) Saeed Muhammad Khan, during whose tenure the controversial deal was struck, has revealed. In a defamation suit filed against a television channel in the court of district judge, Islamabad, through his counsel, Admiral Khan said that the Pakistan Navy had recommended to the then government in 1994-95 to go for five or six UK-manufactured Upholder submarines, but the then regime, using its discretion, had decided to purchase three Agosta 90 B class of submarine. He disclosed that the recommendation of the Pakistan Navy was rejected by the Ministry of Defence, Government of Pakistan, who decided at their own discretion to purchase the Agosta 90 B class of submarines. He made it clear that the decision to acquire the French Agosta submarines was that of the Defence Ministry, not the Pakistan Navy, which was only required to evaluate the offered submarines and make their recommendations. Admiral Khan insisted that he was not involved in the controversial Agosta deal in any manner. Last year, Admiral Abdul Aziz Mirza had told the newspaper that the then Naval Chief Admiral Saeed Khan had revealed that former Prime Minister Benazir Bhutto’s Defence Minister Aftab Shaban Mirani had clearly indicated to the Pakistan Navy’s high command the government’s preference for the induction of the French submarines. Admiral Mirza led the Pakistan from October 1999 to October 2002.

Chinese military capabilities.

China has at least 71 submarines as of December 2010, and is building subs faster than the US is. It has been estimated that it has at least 2 Shang class submarines; if it has more than 2, it has more than 71 submarines of all classes. 71 boats is also the number of subs owned by the USN. Wikipedia’s numbers suggest that, depending on how many Romeo/Ming class subs the PLAN has, it has a total of 67-75 submarines (23-31 Romeo/Ming class boats, 5 Han class subs, 2 Shang class subs, 1 Xia class sub, 1 Golf class sub, 5 Jin class subs, plus dozens of Song class, Yuan class and Kilo class boats). Wikipedia’s total estimate is 63, but it is incorrect according to Wikipedia’s own numbers. The PLAN has no fewer than 67 subs if it has 23 Romeo/Ming class subs.

That Jin class are noisier than Soviet submarines produced 30 years ago and would be detected as soon as they’d leave their homeport. How exactly would they be detected? Their homeport (the Sanya submarine base) is underground; these subs are underwater as soon as they leave their homeport. How the hell is the USN going to detect them? Remember, this is the same navy that can’t even detect a Song class submarine.

Russian Submarine Woes.

It took nearly two decades, but the first of a new class of nuclear-powered attack submarines has launched in Russia. Severodvinsk, displacing 12,000 tons, is now on sea trials. The $1-billion vessel’s launch heralds a modest recovery for Russia’s decrepit undersea fleet. Construction of Severodvinsk began in 1993 at the Sevmash shipyard in northwest Russia, but was repeatedly interrupted. ‘They ran out of money multiple times,’ Owen Cote, Jr., a Massachusetts Institute of Technology professor and undersea warfare analyst, told The Diplomat. Moscow plans to build up to nine more submarines of the Graney class over the next couple of decades, alongside 10 new ballistic-missile submarines of the Borei class. As submarines last only as long as their nuclear cores, few serve longer than 40 years. Life limitations and the slow build rate mean that Russia’s submarine fleet could decline to fewer than 20 operational vessels within the next few years, compared to around 60 active US submarines. ‘It’s on the upturn,’ Cote said of the Russian submarine force, ‘but it’s on the ropes – a disaster by our (US) standards.’ Quality is also a problem, Cote said. ‘The (US) Office of Naval Intelligence said a few years ago that Severodvinsk would be the most quiet nuclear submarine in the Russian or Chinese inventory. That’s not saying much in current terms.’

Royal Navy subs start to sink in numbers.

A NEW guide to the Royal Navy shows it is down to just 11 submarines, including the new HMS Astute that is on its sea trials. Steve Bush, editor of the 20011 edition of British Warships and Auxiliaries produced by Maritime Books, says the Royal Navy is in a “dire state” and fears that even more cuts could be made in the future. The guide lists all the fighting ships and auxiliary supply ships in the Navy. They include the Barrow-built surface ships, the commando carriers, HMS Albion and HMS Bulwark, the VSEL helicopter carrier HMS Ocean which was built at Govan but then fitted out and named in Barrow, the Type 42 destroyer HMS Manchester and the tanker RFA Wave Knight. All 11 nuclear powered submarines were built in Barrow, which is the only UK shipyard that can make them. The introduction to the guide says that the Navy is to order all seven Astute submarines made in Barrow. But Mr Bush, who served in the Navy, said other decisions, including the scrapping of the maritime reconnaissance aircraft the Nimrod, and the pensioning off of the last serviceable aircraft carrier and its aircraft by the Government to save cash, are a serious blow to Royal Navy capability.  He said the Trident missile continuous at sea deterrent needed the Nimrod as part of its protection. He wrote: “In the current economic climate, I would not be surprised if more pain were to come. These are dire times for the Royal Navy and, if it is to fend off further cuts, it is going to have to vocally fight its corner, because it cannot rely on public support. The 11 submarines now compares with a fleet of 32 submarines back in 1982, at the time of the Falklands War. Present boats include four Vanguard-class boats made in Barrow to carry Trident nuclear missiles, and Trafalgar and Astute-class boats. The guide features HMS Astute on its front cover and has photos of many of the vessels.

Iran Receives More Mini-Subs.

Iran has put two coastal submarines into service. Apparently with technical help from North Korea, Iran is building these mini-submarines for operations along its coasts, and throughout the Persian Gulf. Four have been built so far. The sub has a two man crew, and can carry three divers, or several naval mines, or a torpedo. The Iranians say they will use the mini-subs to lay mines or launch underwater commando attacks. While the North Koreans provided some technical assistance, the Iranian sub is a local design, smaller than most North Korean mini-subs, which is a reflection of the more turbulent seas found off the Korean coast. In the shallow waters of the Persian Gulf, the Iranian minisubs (which look like an enlarged torpedo, with a glassed over cockpit in the front), can be very difficult to detect. Their range is probably a few hundred kilometers, more than sufficient to reach any targets in the area. However, the United States Navy has spent a lot of time and effort on the problem, and is probably better prepared to deal with minisubs than most navies. North Korea has a fleet of over 60 mini-subs, and apparently Iran wants at least a few dozen.

Little Subs for Commandos.

Iran is not happy with the mini-submarines they have built, with North Korean help, and have ordered four North Korean minisubs, which are supposed to be delivered this month. These small boats are used to deliver commandos, or stealthy attacks on enemy (U.S.) warships. Last year, Iran put two more of their own mini-submarines into service. Four have been built so far. This sub has a two man crew, and can carry three divers, or several naval mines, or a torpedo. The Iranians say they will use the mini-subs to lay mines or launch underwater commando attacks. While the North Koreans provided some technical assistance, the Iranian sub is a local design, smaller than most North Korean mini-subs, which is a reflection of the more turbulent seas found off the Korean coast. In the shallow waters of the Persian Gulf, the Iranian minisubs (which look like an enlarged torpedo, with a glassed over cockpit in the front), can be very difficult to detect. Their range is probably a few hundred kilometers, more than sufficient to reach any targets in the area. North Korea has a fleet of over 60 mini-subs, and apparently Iran wants at least a few dozen. North Korea got the idea for minisubs from Russia, which has had them for decades. The most recent Russian minisub design is the Piranya. This is a 200 ton, 93 foot long boat with a max surface speed (on diesel) of 14 kilometers an hour. Using batteries, max underwater speed is 12 kilometers an hour. Max range is about 1,800 kilometers, cruising on the surface at about 7 kilometers an hour. Under water, max range is 460 kilometers at the same speed. The Piranya has a crew of three and can carry six divers. There are two cargo containers built on the deck that can be used to carry two mines, two torpedoes or diver equipment. An Italian firm makes similar mini-subs, which have been sold to Pakistan. Since China does a lot of business with Pakistan and North Korea, some of that Italian technology has probably made its way to North Korea. There, North Korea has developed several mini-sub designs, most of them available to anyone with the cash to pay. The largest is the 350 ton Sang-O, which is actually a coastal sub modified for special operations (it can carry about 30 armed passengers.) The most popular model is the M100D, a 76 ton, 58 foot long boat that has a crew of four and can carry eight diver and their equipment. The most novel design is a submersible speedboat. This 40 foot boat looks like a speedboat, displaces ten tons and can carry up to eight people. It only submerges to a depth of about ten feet. Using a schnorkel apparatus (a pipe type device to bring in air and expel diesel engine fumes), the boat can move underwater. Nine years ago, a South Korean destroyed sank one of these. If these are the mini-subs Iran bought, they could be flown in. Otherwise, the North Korean boats will have to be brought in by sea, which could lead to a confrontation with American or NATO warships off the Iranian coast.

Russian miniature submarines

Project 865 Piranya, Losos Class. Dsigned for special operations and to engage surface ships located offshore, the Piranya is toughly built and is almost completely silent. The hull is comprised of a titanium alloy, that reduces the effectiveness of enemy mines. Divers can be deployed on sabotage missions. The divers remain in contact with the submarine, which is capable of supplying them with oxygen for breathing, electricity, warmth, and monitors to ensure that underwater instruments are operating normally. The Piranya’s 1200 kW lead-acid batteries allows the submarine to remain underway for ten days and the submarines at sea replenishement capabilities allows the submarine within 8 hours to receive enough food, fuel and lubricants, and air for an additional ten days. In 1991 the St. Petersburg-based Special Boiler Design Bureau (SKBK) completed development of the Kristall-20 AIP system for the Piranha. The AIP underwent comprehensive testing and was accepted by the customer - the Ministry of Defense. However, AIP systems were never installed in submarines due to reductions in defence spending.

US Navy miniature nuclear sub, the NR-1.

The Deep Submergence Vessel NR-1 is a unique US Navy nuclear-powered ocean engineering and research submarine. Casually known as "Nerwin," it was built by the Electric Boat Division of General Dynamics at Groton, Connecticut. It was launched on 25 January 1969, completed her initial sea trials 19 August 1969, and is homeported at Naval Submarine Base New London. It was never named or commissioned. The United States Navy is allocated a specific number of warships by the U.S. Congress. Not only did Admiral Hyman Rickover not want to "use up" one of those authorizations, but he also wanted to avoid the oversight that a warship receives from various bureaus. The NR-1 performs underwater search and recovery, oceanographic research missions and installation and maintenance of underwater equipment, to a depth of almost half a nautical mile. Its features include extendable bottoming wheels, three viewing ports, exterior lighting, television and still cameras for colour photographic studies, an object recovery claw, a manipulator that can be fitted with various gripping and cutting tools and a work basket that can be used in conjunction with the manipulator to deposit or recover items in the sea. Surface vision is provided through the use of a television periscope permanently installed on a fixed mast in her sail area.

US Seal Delivery Vehicle SDV.
Submarines have long been used for special operations - carrying commandos, reconnaissance teams, and agents on high-risk missions. Most special operations by U.S. submarines are carried out by SEALs, the Sea-Air-Land teams trained for missions behind enemy lines. These special forces can be inserted by fixed-wing aircraft, helicopter, parachute, or surface craft, but in most scenarios only submarines guarantee covert delivery. Once in the objective area, SEALs can carry out reconnaissance, monitoring of enemy movements or communications, and a host of other clandestine and often high-risk missions. Nuclear-powered submarines are especially well-suited for this role because of their high speed, endurance and stealth. U.S. nuclear powered submarines have repeatedly demonstrated the ability to carry out special operations involving many swimmers. During exercises, which include Army, Air Force, and Marine Corps special operations personnel as well as SEALs, submarines recover personnel who parachute from fixed-wing aircraft and rappel down from helicopters into the sea, take them aboard, and subsequently launch them on missions. These Special Warfare Team Missions include: Combat Swimmer Attacks. connaissance and Surveillance.Infiltration/Exfiltration. Acoss the Beach, Beach Feasibility Studies, Hydrographic Survey, and Surf Observation Teams in support of amphibious landing operations.

SECRET DELIVERY: Advanced SEAL Delivery System (ASDS)

A mini-sub that can transport up to 16 Navy SEALS with stealth and speed, the ASDS is the first of its kind to provide a comfortable, and perhaps more importantly, dry ride for the elite SOCOM forces.

S Korean Mini Subs

SX 756 Dolphin mini-submarine
The South Korean Navy operates six or eight Dolphin class mini-submarines. These SX 756-class midget submarines are based on the Italian Kosmos design. These mini-submarines are otherwise very poorly attested, and essentially no details are publicly available.

Italian Mini Submarines.

The Naval Special Services Group (SSGN), numbering 1,000 marines, is responsible for conducting unconventional operations at sea and along the shoreline. Delivery or insertion of maritime special forces includes fixed- wing/helicopter low-level parachuting, light craft beaching and underwater conveyance, for which the navy operates at least three Cosmos Class MG110 miniature submarines (SSI) and some swimmer- delivery vehicles. On the basis of design developed by PN Dockyard, this type of mini submarine has been constructed at PN Dockyard. These mini-submarines can be used for various purposes like attacking enemy units in harbour with Frogmen/Charriots, at sea with torpedoes, at shore installations by commandos etc. other uses include mine laying, defensive barrier in shallow waters, advance pickets duties, intelligence gathering etc. Although the Italian Navy pioneered the use of human torpedoes (known today as swimmer delivery vehicles or SDVs), in today's Italian Navy there are no midgets. However Cosmos of Livorno has sold a number of midgets abroad. The SX 404 type sold to Pakistan in the early 1970s have been replaced by three [or possibly four] Italian-built SX-756-class midget submarines, delivered in 1988. These displace 40 tons and are capable of diving to a depth of 100m. They can carry six swimmers and two SDVs, as well as 2 tons of explosives.
The VAS submarine is both USCG and CISR compliant which means the diving crew and passengers can board the submarine in the open sea in complete safety and leave the submarine as soon as it has surfaced, avoiding the boredom and stress of transit, launch and retrieval. It also features 96-hours of emergency life support (in addition to it’s 8-hour mission time) which is 33% more than international requirements. The VAS minisub offers a range of up to 50 nautical miles at three knots, or 15 miles at six knots. Thus, the submarine does not need to be launched right on the diving site, nor be retrieved onboard at the end of each dive. It is the only recreational submarine that can carry out visual and instrumental searches, as well as the safe launch and retrieval of SCUBA divers. Additionally, the VAS can be towed on the surface at up to 8 knots, allowing you position the VAS above the dive site


Exosuit Swimmable ADS

The exosuit has self-contained life-support, it could be an escape system, or a one-man delivery system for infiltration and sabotage.

user posted image

Pressure Hull/ Spacers:
Composite Fiber with metal inserts plus titanium and/or aluminum spinnings.

Life Support:
Two cylinders carried externally; 02 portside and diluent gas starboards, or both 02, both air or both bottom mix (depending on suit model)

Tear-drop shaped, acrylic dome port.

Basic pincer manips or four-fingered prehensor "hand".

UQC and 27 KHZ wireless - VHF-surface Sub-surface - UQC and 27 KHZ

Tech, military, science: self-contained, autonomous and free-swimming.
Commercial, surface-oriented: air supply from surface (LP compressor or HP cylinders), hardwire comms, surface air power positive displacement pump-down system (patent applied) with double acting pressure joints.

Submarine escape:
minimum joints, double-acting joints, small storage package. Escape depth to 1200 ft (365m).

user posted image

NUYTCO Deep Worker

Vehicle Specifications:
Length: 8.25 ft. (2.4 m)
Beam: 5.3 ft. (1.6 m)
Height: 4.5 ft. (1.35 m)
Weight in Air: 1.75 tons
Operating Depth: 2000 ft. (600 m)
Payload: 250 lbs (114 kg)
Life Support: 80 man hours
Max Speed: 3 knots
Crew: 1 pilot
Power: 12 KWH (6-8 hour dive duration)

Nuytco Research Ltd. is a world leader in the development and operation of undersea technology. Nuytco and its sister company, Can-Dive Construction Ltd. have over thirty years experience working around the world. Nuytco designs, builds, and operates atmospheric diving. In 1997, Nuytco designed and manufactured a 2000-foot micro submersible Deep Worker, which is a revolutionary deep diving system that has been called an underwater sports car.

Sweden Special Operations Submarines ( Sea Dagger Series)

The Sea Dagger series of submarines are special operations vehicles developed by Kockums of Malmo, Sweden, now owned by HDW of Germany. The small stealthy submarines are tailored for five types of missions: attack; autonomous swimmer delivery; surveillance and minehunting; and as a target vehicle for antisubmarine warfare exercises and training. he Sea Dagger variants are constructed from three modules, the bow and stern modules and one chosen from four specific mission module options. The submarines are small, with displacement in the range of 55t to 72t, a length of between 16 and 20m, a height of 3.6m and a diameter of 2.5m. The four variants of Sea Dagger are equipped with sonar, communications systems, and a comprehensive navigation suite including a navigation computer, a gyroscope compass, speed log, depth gauge, echo sounder, global positioning system, navigation radar and optronic mast. The diesel electric engine provides a surface speed of 6 or 7 knots according to the submarine configuration, and a submerged speed of 8 knots. The operational endurance is eight days (five days for the Advanced Target Submarine). The range is 2 x 350 nautical miles at 4 knots (3 knots for the ATS), and 70 nautical miles under battery power at 4 knots (35 nm at 3 knots for the ATS). The surface speed is 7 knots and the underwater speed 8 knots. The operational endurance is eight days (five days for the ATS).

The Small Attack Submarine has the capability to carry and launch externally stowed weapons. A range of half-length anti-submarine warfare (ASW) weapons and mines can be carried. The submarine is operated by a crew of four, with two combat system operators. The rescue chamber can accommodate single escape or lockout. he attack submarine is fitted with passive, intercept and obstacle avoidance sonar. The communications systems include VLF/LF, HF, and VHF antennae, internal and external communications, an underwater telephone system and a diver communications system. The submarine's combat systems include a command and control system, electronic support measures, two external torpedo tubes and a weapons launching system.

The ASDV Autonomous Swimmer Delivery Vehicle carries, delivers and retrieves combat swimmers. The operational endurance is eight days. The vehicle carries no external weapons. he submarine is operated by a crew of four and can accommodate up to six divers. A lockout chamber allows four divers to exit simultaneously.
The ASDV has passive, intercept and obstacle avoidance sonar. The communications suite includes a VLF/LF antenna system, HF and VHF antennae, external and internal communications, underwater telephone system and a diver communication system.


The Advanced Surveillance Vehicle is equipped for surveillance and minehunting operations. An electronic support measures system is installed on the submarine. The communications system provides transfer of surveillance data. The submarine is operated by a crew of four, with two surveillance and minehunting system operators.
The submarine has passive, intercept and obstacle avoidance sonar. The communications systems on the surveillance vehicle are VLF/LF, HF and VHF antennae, external and internal communications, underwater telephone and diver communications.

The Advanced Target Submarine, ATS, provides a target vehicle for Anti-Submarine Warfare (ASW) training primarily for littoral warfare training. A variety of signatures and target signal strengths can be generated by the target simulator. The ATS is operated by a crew of three and the operational endurance is five days.
The Advanced Target Simulator is equipped with an obstacle avoidance radar, a VHF antenna system, external and internal communications and an underwater telephone system.

India To Buy Commando Sub
The Indian Navy plans to acquire four underwater special operations vehicles and will seek foreign companies to assist with design and construction. Last month, the Navy sent bids to two Indian defence companies, the private Larsen & Toubro and state-owned Mazagon Docks Ltd. (MDL), Mumbai, under which the four submarines will be built in two phases, with each vehicle to cost about $80 million.  The vehicles are intended for commando and underwater operations in enemy territory, a Navy official said, and are being bought as part of the service’s new doctrine to equip the fleet for littoral warfare.  An MDL official said design help will be sought from overseas shipyards, but refused to name those short-listed for the purpose.  The vehicles’ main functions will be to transport divers and their gear from the mother craft to attack targets like a ship riding at anchor and coastal and offshore installations. The special submarines also will conduct covert surveillance, attack operations in shallow enemy waters and help remove commandoes and divers from a predesignated position after a mission. The vehicles must be able to operate in tropical conditions and be carried by midget submarines. They need a minimum life of 20 years. The special vehicles should also be able to operate at a depth of 60 meters and transit at 150 meters, the Navy official said. The vehicle would be about nine meters long, be no higher than 1.5 meters and have a hull diameter of around 1.5 meters. The special vehicle will carry armaments, including up to 250 kilograms of explosive charges. The Indian Navy currently operates about 16 submarines, including four German-designed subs, 10 Russian Sindhugosh-class Type 877EMs, armed with Klub cruise missiles, and two Foxtrot subs. MDL also has been contracted to license-produce six French Scorpene subs for the Navy. After delivery of the special vehicles is completed in five years, all Indian subs will carry them, the Navy official said.


Marion Hyper Sub

A one-of-a-kind hyper-submersible combination power boat (HSPB), returned recently from a visit with Special Operations Command (SOCOM) in Tampa and Special Warfare Command (SPECWAR) located in Coronado, Calif., just across the bay from San Diego. “What was different about this visit was that the members of the Special Warfare Command are end users,” Marion said. “We were talking directly to Navy Seals and Riverrines. “What an elite group of guys we met there. We were honored to be speaking to them because they definitely get it. They understand the capabilities of the hyper sub,” Marion said. Marion said three members of his management team made the trip to Tampa and California with him. “Vice Admiral Jim Amerault, retired; Dave Smith, our chief financial officer; and our attorney Russell Wade and I met with the military to discuss the recent successful test dives of the hyper sub,” Marion said. “Amerault used to head up the entire budget for the U.S. Navy.” Marion said that SPECWAR acknowledged that they have operational and capability gaps. “They basically told me that there is nothing else like it and that it is a technology that they need in their inventory now. “In my opinion, we should see the military begin to move to support what we are doing within a few months,” Marion said. He said that talks with the military have taken an encouraging turn. “They have it to the point where they are debating amongst themselves whether the hyper sub would be applied to their submersible operations or their surface craft operations,” Marion said.

More Iranian Mini subs

Iran recently announced that it had put four more mini-submarines into service, for a total of eleven in the last five years. Over the last decade, Iran has, apparently with technical help from North Korea, been building mini-submarines for operations along its coasts, and throughout the Persian Gulf. The first two entered service about five years ago. The sub has a two man crew, and can carry three divers, or several naval mines, or a torpedo. The Iranians say they will use the mini-subs to lay mines or launch underwater commando attacks. While the North Koreans provided some technical assistance, the Iranian sub is a local design, smaller than most North Korean mini-subs, which is a reflection of the more turbulent seas found off the Korean coast. The Iranian subs appear to be based on the North Korean M100D, a 76 ton, 19 meter (58 foot) long boat that has a crew of four and can carry eight divers and their equipment. The North Koreans got the idea for the M100D when they bought the plans for a 25 ton Yugoslav mini-sub in the 1980s. Only four of those were built, apparently as experiments to develop a larger North Korean design. There are believed to be over 30 M100Ds, in addition to eleven of the Iranian variation.

Building subs like this are not high tech. A drug gang in Ecuador was recently caught building a 30 meter/98 foot long submarine on a jungle river. This boar was three meters/nine feet in diameter and capable of submerging to about 30 meters. The locally built boat had a periscope, conning tower and was air conditioned. It was captured where it was being assembled, and a nearby camp, for the builders, appeared to house about fifty people. This was the first such sub to be completed, but not the first to be built. Nearly a decade ago, Russian naval architects and engineers were discovered among those designing and building a similar, but larger, boat. However, that effort did not last, as the Russian designs were too complex and expensive. It was found easier to build semi-submersible craft. But more and more of these are being caught at sea. The recently discovered sub was not military grade. It could travel submerged, but not dive deep. It was built using the same fiberglass material used for the semi-submersible craft, but was larger, and had berths for six crew. There was space for about ten tons of cocaine. It probably cost several million dollars to build and was weeks away from completion and sea trials. The drug sub was similar to the small subs being built since the 1970s for offshore oil operations and underwater tourism. North Korea has developed several mini-sub designs, most of them available to anyone with the cash to pay. The largest is the 250 ton Sang-O, which is actually a coastal sub modified for special operations. There is a crew of 19, plus either six scuba swimmer commandos, or a dozen men who can go ashore in an inflatable boat. Some Sang-Os have two or four torpedo tubes. Over thirty were built, and one was captured by South Korea when it ran aground in 1996. North Korea is believed to have fitted some of the Song-Os and M100Ds with acoustic tiles, to make them more difficult to detect by sonar. This technology was popular with the Russians, and that's where the North Koreans were believed to have got the technology. The most novel North Korean design is a submersible speedboat. This 13 meter (40 foot) boat looks like a speedboat, displaces ten tons and can carry up to eight people. It only submerges to a depth of about ten feet. Using a schnorkel apparatus (a pipe type device to bring in air and expel diesel engine fumes), the boat can move underwater. In 1998, a South Korean destroyer sank one of these. A follow on class displaced only five tons, and could carry six people (including one or two to run the boat). At least eight of these were believed built.

Narco submarines, torpedoes and semi-submersibles

This is likely to be an ongoing project to catalogue and illustrate Latin American narcotics SPSS' (Self-Propelled Semi-Submersibles) so if it appears incomplete when you visit, please consider checking back occasionally for added material. We are looking at these boats from an equipment standpoint - for fuller histories and info on the narcotics trade there are lots of sources out there. These are not military units but relevant to the topic of covert naval equipment in general, and certainly of interest to the authors. Each craft is built to order in jungle factories and unique, but certain themes and techniques hold true. Exact data is hard to obtain.

There are many ways to categorize, divide up and "slice and dice" these craft. From an evolutionary standpoint there have been three phases:

  • 1992 - 2004 Experimentation through trial & error.
  • 2005 - 2006 Rapid prototyping and increases in capability. Development and use of SPSS.
  • 2007 + Mature designs with greater standardization

Additionally these craft can be divided by type:

Type 1: Fully Submersible
Type 1A: Submarine with self propulsion etc. The most advanced and consequently expensive to create type. These are very rare although a handful have been captured. There doesn't seem to be any evidence of successful operation of this type but analysis of circumstantial evidence suggests that these are increasingly employed.
- Type 1B: Towed 'Torpedo' - covert transportation canister towed by disguised vessel.

Type 2: Semi-submersibles capable of ballasting down to lower their surface profile, and controlling their running depth, but not fully submerging. These are also very rare with only a few ever captured.

Type 3: Low-profile vessels (LPV), which are often misdescribed as "semi-submersible" and constitute the vast majority of these vessels to date. Simply a boat designed to run awash to minimize radar cross-section.

A brief chronology of major discoveries (Not exhaustive).

1992 - Colombian Navy begins to detect modified speedboats and semi-submersibles. Typically built out of fiberglass with 1 to 1.5 tons capacity.
1994 - More elaborate submersible design with radar, a depth meter and an internal oxygen supply captured in Tayrona Park, Columbia. Capacity still around 1 ton.
1994 - Half built submersible captured in Turbo, Columbia.
1995 - Incomplete submarine captured in Cartagena, Columbia. Much more capable design.
2000 - half-built very advanced submarine captured at Facatativa, Columbia.
From 2001 to 2004 there was a significant gap in captures. It is likely that there was very little SSPS activity in this time.
March 2005 - Low profile boat captured in Tumaco, Columbia. Very little press coverage outside Columbia - only craft captured that year.
March 2006 - Large low-profile boat captured on River Timbo near Pital, outside Buenaventura, Columbia by Marine Riverine Infantry Brigade Nr.2.
November 2006 - US forces capture a low-profile boat, dubbed Bigfoot-1.
August 2006 - Spanish police capture a fully-submersible narco sub off Galicia, Spain. The craft was locally built in Spain and in design terms unrelated to Colombian examples.
August 2007 - Large low profile boat captured in Guajira on Columbia's Caribbean coast
November 2007 - Low profile boat captured near Buenaventura in Columbia. Close resemblance to Guajira boat but single engine/screw.
2007 - 'Narco-Torpedo' type craft start to be captured
2008 - US forces capture a second low-profile boat similar to earlier 2005 Tumaco boat. Dubbed Bigfoot-2.
May 2010 - Low-profile boat captured in Ecuador
June/July 2010 - Large (30m) Submarine captured in Ecuador

Example Fully Submersible craft...

1994 Tayrona Submarin
L <10m

A small boat, made of wood and fibreglass captured in Tayrona, Columbia in 1995. Found to be unstable when tested by authorities. Fit for shallow submergence only with depth controlled by lead weights externally mounted on lower hull. Had advanced communication and navigation equipment.

1995 Cartagena submarine
L 11.7m, W 2m
Capacity 1.5 tons

As the name suggests, this craft was captured in 1995 at the northern coast port of Cartagena in Columbia. This submarine is relatively advanced in some respects with a cylindrical steel hull suggesting the intention to operate it at deep depths relative to the fibreglass boats. Although unfinished, it is not clear how depth was to be controlled - the lack of ballast tanks or the water inlets/outlets associated with them suggests maybe lead weights were to be used as per the 1994 Tayrona boat.

Facatativa Submarine‏
Discovered by Colombian police in Cartagenita/Facatativa in September 2000.
Type 1A Submarine
L 30m, W 3.5m
Capacity - 15-20 tons

Upper sketch shows the craft as discovered, lower sketch shows approximate finished configuration.

By far the most advanced design captured to date, this appears to be the work of Russian advisers and has many features similar to real military diesel-electric submarines. The boat was to be 'double hulled' with a single shrouded screw. Crew is thought to be up to 12 persons. Construction cost is estimated at 10 million USD.

If completed this sub would have been capable of extremely long ranged missions and would have operated similarly to a military submarine.

At 30m long the Facatativa boat is about the same size as an MG-110 or IS-120 military midget submarine. The Facatativa boat has a greater internal volume that either of these boats with a larger diameter pressure hull. The pressure hull also appears to extend almost the full length of the boat, maximizing storage space. The narco sub would likely have depth sonar, satellite comms, GPS and a navigation radar - advanced stuff but not comparable to the military boats. Additionally as a cargo carrier the Facatativa boat does not have torpedo tubes or it seems diver lock-out facilities.

Size progression, approximate scale:

2006 Vigo

L - 11m, W - 3m

Load: 1 ton

Captured by Spanish Police on the Atlantic coast, this submarine is thought to be locally produced and not closely related to the Colombian subs in design terms. The boat is made from steel with ballast tanks on the flanks. An interesting design feature is the use of separate props for the diesel (main) and electric drive. The craft was likely intended for short transits between the cargo ship and shore.

2010 Ecuador 30m Sub

L - 30m, W - 3m

A large fibreglass submarine, with diesel-electric drive and twin screws. The construction limits it to shallow submergence, but it is clearly designed for underwater operation. The lower hull on the attached sketches is speculative. The pilot windows in the base of the sail are very similar to the cockpits of recent low-profile boats. The boat was painted in multi-tone camouflage.

Designed to be even harder to detect than low-profile boats, but cheaper than proper crewed submarines, the 'torpedo' is towed behind a boat (disguised as a fishing, commercial or leisure craft) at a depth of about 30m. The torpedo is released if the authorities approach, and discharges beacons after a set period of time to allow recovery by a back-up boat after the authorities have left the area.

Example semi-submersible boats....

1993 San Andres semi-sub
L (approx) 7m
Capacity 1 - 2 tons
Crew 2

The only true semi-submersible captured to date, this early type was constructed largely of wood and fibreglass.

Steel LPVs
L - 18m, W - 3.1m

Example captured in Feb 2008. At least one very similar craft (almost certainly a 'sister-ship') scuttled during capture since. Distinct from other low-profile boats in capability to trim running depth via hydroplanes at rear. Possibly equipped with internally water ballast to further assist. Much lower profile than most low-profile boats with nose completely submerged even in calm seas. Metal construction implies re-use, relative to the one-way M.O. of most fibreglass craft. The faceted hull form does not offer deep-diving capability as would a cylindrical pressure-hull found on a true submarine.

This second example has slightly different piping, but is otherwise similar.

Example low-profile boats....
Earliest craft
The first low profile boats amounted to a sealed 'go-faster' boat which rode lower in the water. Typical arrangement had cabin at rear and cargo hold amidships.

Between 2001 and 2005 there seems to have been a sharp drop in activity, then in late 2005 low profile craft started to be captured again. Over time the above configuration has given way to a more specialised hull form with generally pointed bow and stern, with tiny cabin amidships with engine compartment rear and cargo in every available space. Features like sloping sides to the cabin suggest radar stealth, but other features contradict this design consideration - stealthiness is primarily provided by simply being low in the water and being largely fibreglass.

2006 Pital capture
L - 18m, W - 3.8m
Load: 4 tons

This craft is unusual for its twin engine, twin prop arrangement, but otherwise is a generic low-profile design. The craft was captured in March 2006 near Pital on the River Timbo outside Buenaventura, Columbia.

So-called because "narco-subs" were widely reported but within the US military no-one had actually caught one. That changed with the capture of a low-profile "sub" in November 2006. US forces had seen the earlier craft captured by the Colombians so the design was not that unexpected. Bigfoot-1 is quite different in shape to the more common hull design (typified by Bigfoot-2), having a rounded hull, but it is not unique in this characteristic either.

2007 Guajira low-profile boat
L - 20m, W - 3m
Load: 10 tons

Although narrower than the Bigfoot-2 type and only slightly longer, the rounded cross-section of this craft gives it a much larger internal volume and load capability than most other low-profile boats. The design is twin engine with twin props. Although unconfirmed, some believe this boat may have been built for longer distance trips from Columbia to Europe or Canary Islands from where the load could be transferred to vessels waiting offshore.

A remarkably similar boat was captured a couple of months later, suggesting the same designer:

Captured by US forces 2008. Often described as "Semi-Submersible" but fitting our Type-3 Low Profile classification system in actual capability.
L - 18m, W - 3.66m

Load: 6.4 tons

Other recent low-profile boats

Nacro-Sub very similar to Bigfoot-1, captured in July 2007 off Columbia's Pacific coast.

Nacro sub generally similar to Bigfoot-2.

PROPER- Amateur Submarines.

There are only handful of civilian fully-submersibles which are in size terms many respects comparable to military midget subs. Our greatest respect and secret envy to the people who get to build these, and all the other subs we've missed.

  • IC-1 Freya - Denmark
  • UC-2Kraka - Denmark - 12m
  • UC-3 Nautlius - Denmark - 16m
  • Spurdog - Netherlands - 20m
  • Euronaut - Germany - 16m
  • Malen - Sweden
  • SR93H Polaris-Delta - Hungary - 20m
  • SS86H Helen's Heart - Hungary - 7.5m

Kraka L - 12m
Built by Peter Madsen. Styled on WWII German U-Boat.

Probably the best known civilian midget sub. Interesting features include 'diving helmet' cockpit and bottom mounted diving hatch below sail. Forward viewing windows positioned to look like torpedo hatches.

L - 16.01m W - 2.5m
Speed: 8kts
Built by Carsten Standfuss in Germany for wreck diving. Nearing completion. Website for lots more info:

Very large by civilian standards, the Euronaut is relatively sophisticated and heavily built, able to dive to an impressive 250m (test depth 320m). The sub will operate with a 5 person crew for up to 7 days before surfacing.

UC-3 Nautilus

L -17.7m, W - 2m

About the same size as the Euronaut, Peter Madsen's third submarine follows on from the Kraka. The sub became operational in 2009 and is employed in recreational diving. The hull features large port holes for observation.

SS86H & SR93H

SS86H: L - 7.5m

SR93H: L - 20m

Forintos Gyula's first submarine, SS86H, was extensively demonstrated to the Hungarian military for river use in the early 1990s, particularly for mine clearance. That proposition is a serious one as the Danube has been mined repeatedly in WWI and WWII and unexploded mines remains a threat. The Hungarian Defense Forces did not purchase the sub.

The later SR93H is a highly stylized design with a military/sci fi theme but underneath is a true sub intended for a scientific polar expedition which sadly has yet to materialise. Despite its relatively great length, the pressure hull is very small diameter and the 5-6 man crew have to crawl and crouch at all time within the hull. Although it may not be the most practical or capable design, its mean looks deserve a film opportunity.


L - 20m

Built in the late 1980s in Holland by two guys who watched Das Boot and were inspired, this boat more recently suffers the indignity of being a houseboat. If anyone has more information, please comment to this article.

North Korean Small Submarines

DPRK export submarines are particularly interesting as they offer rare insight into North Korean types. Iranian IS-120 Ghadir submarines are particularly useful in this regard and are interesting in their own right.

MS-29 Yono (Yeoneo)
Displacement: 115 - 130 tons surfaced
Length: 29m
Width: 2.75m (hull)
Powerplant: Diesel-electric with folding snort mast. Single diesel.

The recent sinking of a South Korean warship Cheonan has brought more details of DPRK's midget submarine fleet into the public domain. Reliable information about the MS-29 Yono ("Yeoneo") class submarine comes from captured Sang-O crewman Lee Kwang Soo, interviewed by South Korean blog Daily-NK ( ).

Lee describes it as a modified Yugo class. The displacement is significantly greater than the basic Yugo class, and represents an enlarged P-4 class boat with other modifications. The export version is known as IS-120 which has been exported to Iran.  The externally mounted torpedoes are described by the former DPRK submariner. Older variants of Yugo boat with externally mounted torpedoes were already known, so there may be some mix-up in translation. Lee cites quite launch, whereby the torpedo 'swims' away under its own power rather than being forcible ejected from the torpedo tube (which is noisy and may alert the target to the launch) as the motive for this arrangement. This is plausible of course and is not unique among small submarines. The disadvantages of course are performance and weapons maintenance.

It should be noted that the previously captured 'P-4' boat clearly had design adaptions for two internally mounted torpedo tubes, and the IS-120 'Ghadir' class operated by Iran also has internally mounted tubes. Careful inspection of available images shows slight differences from exported IS-120 submarines in service with Iran. The two submarines are however closely related and the IS-120 can be viewed as an export model of MS-29 and may reflect later model Yonos in DPRK service.

It therefore seems probable that there are two or three sub-versions:
a) with twin internal tubes as per export boats
b) without tubes, equipped with diver lock-out
c) with external tubes. Possibly fitted to infiltration version (b) above

Dimensions: L 20m, W 2m, Displacement 90t (submerged)
Speed : 10kts surfaced, 4 kts submerged
Armament: 3 configurations:
a) 2 x533-mm externally-mounted torpedoes in drop gear
b) 2 x middleweight (400mm?) torpedo tubes internally mounted in nose. arranged vertically.
c) None in infiltration variants.

A generic name for early midget submarines based on Yugoslavian plans supplied in 1965. Original Yugo class boats likely retired but evolved Yono and P-4 classes still likely operable.

Yugo class with externally carried torpedoes

The Yugo boats have room for 4-6 infiltrators and can carry torpedoes or mines for the attack role. They are relatively short ranged though so for infiltration (or attack in wartime) operations in the far south, off Japan or further away, they require transportation and launch from a mother ship.

Yugo class with internally mounted middleweight torpedo tubes

The ships were built at Yukdaeso-ri shipyard on the west coast from the late 1960s through to the early 1980s at which time they were superseded by the generally more capable Sang-O type. Contrary to some sources, the North Korean Yugo submarine was not very similar to Yugoslavian operated midget submarines such as the impressive Velebit type.

41m Boat
In the early 1980s North Korea developed a much larger coastal submarine known, rather imaginatively, as the “41m boat”. No prizes for guessing the length of this submarine. It is not clear exactly what the boat looked like except that its sail is not unlike the Yugo’s in profile and that it was not a “teardrop” hull. The type does not appear to have been successful and only one is reported and it is unlikely to still be operable.

'Sang-O' type

Dimensions: L 34m, W 3.8m, Displacement: 370t (submerged). Power: 1 diesel, 1 electric motor, 1 shaftSpeed 7.2kts surfaced, 8.8kts submerged
Range: 1500nmMax Depth: 150 meters Crew: 15
Armament (attack sub): 4 x 533-mm torpedoes with no reloads (Inc Russian 53-65 ASW torpedoes)Armament (recce/infiltration version): None. 5 infiltrators and 6 KWP Reconnaissance Bureau Cadre as passengers

Developed as a much improved follow-on to the Yugo type, the Sang-O is well known because one was captured by the South during a botched infiltration mission in September 1997. The Sang-O is much larger and longer ranged than its predecessor. Some boats have the torpedo tubes replaced by a passenger space and diver swim-out door for infiltration and sabotage missions. The 1500nm range is useful enough to allow the boats to operate without a mother ship in most cases making hem much less susceptible to detection. Hypothetically these subs could be modified to carry anti-ship missiles or Shkval rocket-torpedoes but neither capabilities are reported.

'P-4' type

Dimensions: L 29m, Displacement: 190t
Armament: 2 x 533mm (21’’) torpedo tubes (not fitted in infiltration version)

An improved "Yugo" midget submarine design, the P-4 is smaller than the Sang-O but also seemingly more advanced. It features an unusual co-axle twin propeller consisting of a large skewed propeller and a much smaller conventional propeller; this arrangement is believed to be an attempt to reduce the submarine’s noise signature.

An example of this type of submarine was captured during an infiltration mission in 1998 and subsequently put into service with the South Korean Navy emphasizing the build quality of the boat. It was recently taken out of service and put on public display at the war memorial. Interestingly the sensors of the captured boat, including the sonar, were of Japanese origin.

IS-120 'Ghadir'
IS-120 is the export designation of the MS-29 Yono. The only country thought to operate it is Iran, who has at least 4 in service and is locally producing it. As per other DPRK submarine types Yono is a family of submarines with many differences, some slight and some more obvious, between models. Iranian IS-120s are widely photographed and filmed thus giving the best open source insight to date on the Yono class.

In simple terms the Iranian IS-120s are an MS-29 boat with additional sonars and a mast sensor/communications fit very similar to the captured P-4 type.

Appears to be a variation of the Yugo type, this mystery submarine is in service with Cuba. Very little is known of its operational service, numbers or details. Reports also suggest that it is related to the Sang-O class but this seems improbable given its external appearance and other factors of descriptions. May be constructed in Cuba. Artist's impression based on the Yugo form:

A lead provided by Lee Kwang Soo is that some Cubans have inspected North Korean submarines and may have purchased some in 1990s. This ties with the 'mystery' Cuban midget submarine photographed in Havana and previously included in Fortress Cuba

The sub is quite different from other DPRK submarine designs such as P-4 and Sang-O but may be another unreported type.

Viet P-4 ('Yugo')

2 P-4 type midget subs supplied in 1997 and are operated by submarine unit M96. The deal included 16 torpedoes, 282 batteries and 8 mines. Although the torpedo type is not reported they are known to be of 1960s Soviet type, probably Type 53-56. It is likely that the exact model is very close to DPRK-service P-4 although they are generally (not widely, their existence is not well known) referred to as "Yugos", a reference to the original Yugos which would have been second-hand at this time - as a rule DPRK exports new submarines. Some observers misidentify them Sang-O in Vietnamese service. The P-4 is substantially smaller than the Sang-O.

Video still of P-4 on Vietnamese TV (via Vietnamese internet community)

Not all of the equipment sold (torpedoes, batteries, mines) was new and Vietnam had to replace it with Russian source units. Google Earth imagery suggests 20-25m design rather than larger but otherwise similar Yono/IS-120 type:

Russian (/Soviet) SF underwater craft


For Triton-1 and Triton-2, see below
The Russians experimented with a two-man chariot in late 1950s which appears heavily influenced by WWII Italian Maiale and British Chariots. Hull diameter was greater than a torpedo, but otherwise similar. The two crew sat in a single cut-out with shield at the front. There were hydroplanes both fore and aft.


The type does not appear to have been entered operational service.

Sirena / Sirena-UME Often referenced to the WW2 'Maiale' designs of 'Human Torpedo', the Sirena is not closely related except in so far as it is based on a WWII 533mm torpedo. The first Sirena tests models reused war-trophy German G-7E torpedoes but these proved problematic and Soviet motors were used on production units.

At least one early craft, probably a prototype using the G-7E torpedo aft section, had the crew sitting closer together facing opposite directions as per the British Chariot MkII. This configuration was not adopted in production models where both the crew faced forward.

The Sirena is in some respects a precursor for the latest SDVs trends in that it can be carried and deployed in the torpedo tubes of Submarines. Some Project 77EK/EKM Kilo class boats have been modified with rams to launch it through their tubes, or it can be carried externally by Piranha midget subs or boats.


L - 8.7m, 11.2m with storage container attached (some sources say L - 8.6m, 10.8m with container)

W - 0.53m

Speed - 2-4 ktsDepth - up to 40m

The crew sit inside the hull with just their upper bodies exposed, like the British Chariot Mk.II but both face forward.

The current version still in service is the Sirena-UME, which is the result of a 1972-76 upgrade to reduce noise. Similar upgrades were applied to the Proteus DPD.

Following is a series of renderings of what a potential Sirena operation would be. The basic layout of such an operation can be considered a blueprint for any operations utilizing similar vehicles.

Two divers exit the sub though a torpedo tube or hatch. The Sirena is deployed though a torpedo tube.

The two divers enter the sub and proceed to the target while the submarine remains clear of the area.

The divers approach their target in this case a NATO frigate resting at anchor.

The divers retrieve their equipment from the storage compartment attached to the bow of the Sirena. In this case one diver is carrying a limpet mine and the other is carrying APS underwater rifle for self defence.

The divers attach limpet mines to vulnerable areas under the keel of the target, such area could be below the engine room or under weapon magazines. The mines would normally be set on a timer to detonate after the divers have returned to the submarine and left the area, mines could also be set to detonate if someone attempts to remove them.

The divers return to the submarine using either GPS navigation or an acoustic homing device attached to the submarine. The divers load the Sirena back in to its torpedo tube and reenter the submarine.

Triton-1 (project 907)

A wet sub now likely all retired, the Triton-1 has a distinctive teardrop bull with the two crewman sitting side-by-side in an aircraft-style cockpit. 32 craft were built entering service between 1973 and 1980.


L - 5m

W - 1.4m

Speed - 6kts

The craft can rest on the sea bed for up to 10 days before being restarted for the homeward journey allowing great operational flexibility.

Triton-2 (project 908)

With some details closely resembling the Triton-1, the Triton-2 is a much larger craft. The submarine is not a 'dry sub' but does have a system to maintain a constant pressure within the submarine regardless of depth. 13 craft were built, entering service between 1975 and 1985.


L - 9.5m

W - 1.5m

Crew: 6

Piranha (Project 865, NATO - Losos)

With two boats entering service in the the early 90s, the Piranha class were purpose built special operations craft. The post-Soviet Russian Navy did not see the need to operate dedicated craft and they were discarded in the early 2000's after attempts to sell them abroad were unsuccessful despite considerable interest in the design.

An interesting feature is the two tubular storage bins for SDVs / diver propulsion devises which give the craft a characteristic hump back.

The starboard storage bin tray is seen with two Protei-5 diver propulsion devices.

L - 28.2m

W - 4.8m

Displacement - 218 t surface, 319 t dived

Speed - 7 kts surfaced, ?? dived

Crew - 3 + 6


Not a military project, the Marina wet submarine is however inherently usable as an SDV. Based on the Sirena-UME (see above), the Marina has an altered crew arrangement allowing 3 crew. Large windshields protect the crew much like the Italian series of SDVs. The design is marketed for private/commercial applications.


L - 7.8m

W - 0.6m

Depth - up to 40m

Speed - 2-4 kts

Diver propulsion units

VSON -55

Early diver propulsion devise dating from mid 1955s as the designation suggests. Consisted of a cylindrical pressure body which attached to the diver's chest, with an arm-mounted electric motor driving a shrouded propeller which tucked between the diver's legs when swimming prone.

Proteus -1

Very similar to the VSON-55 in configuration, the Proteus was a significant all-round improvement better suited to special operations forces. Introduced in 1958.

Proteus -2
At the same time that Proteus-1 was produced, a back-mounted version was introduced. This configuration proved unpopular and Proteus-1 became the preferred layout.

Proteus - 5 / 5M / 5MU
General improvement on Proteus-1 with similar layout. Larger prop. -5MU incorporated noise reduction techniques.

Proteus - L -Special model designed for landing in water by parachute.

A more recent product, the COM-1 features an unusual layout with the diver laying ahead of the propulsion unit. The device features a windshield and can carry two divers although usual operation is for a single diver.

Max speed - 2-3kts.
Depth - at least 30m

Foreign types
R 1 / R-2 - Reports that Soviet/Russian forces may use Yugoslavian (now Croatian) R-1 and R-2 SDVs are almost certainly incorrect.

Seehund - Immediately following WWII the Soviet union inherited two unfinished German Seehund midget submarines. One was placed in service.

CB Class - Following WWII the USSR briefly operated four Italian midget submarines of the CB class.

Small Navies' indigenous infiltration craft

Collection of wet subs, midget subs and other infiltration craft developed in smaller navies, or countries with few designs in this field.

KTBA series wet subs, Indonesia
Indonesia has a capable combat swimmer force, the Kopaska special diver unit, who operate locally produced Sub Skimmer wet subs (a British design, see separate posting). The Kendaraan Tempur Bawah Air (KTBA) series of indigenous wet subs have recently entered service after experimentation and testing. Early models, -I and -II, are twin seat affairs with externally mounted diver propulsion devices. The larger -III and -IV versions have twin in-built propulsors on the rear hydroplane and can carry 3-4 combat divers at 3-4kts submerged. All designs are easily recognised by the distinctive bow fairing with shark-gills and upright windscreen (often without glass). Materials are predominantly fibreglass.


Russian Black Sea Fleet to receive 6 new diesel subs.

Russia's Black Sea Fleet will be strengthened with six Kilo class diesel-electric submarines in the next few years, Navy Commander Adm. Vladimir Vysotsky said on Friday. "Six diesel-electric submarines of Project 636 [Kilo class] will be built for the Black Sea Fleet in the next few years," Vysotsky said in an exclusive interview with RIA Novosti. The Black Sea Fleet, based in Sevastopol, has only one submarine, the Project 877 Alrosa, which is undergoing scheduled repairs in Kaliningrad. Vysotsky said a year ago that the construction of three Kilo class submarines for the Black Sea Fleet had already started and one more would be laid down every year starting in 2010. The fleet would receive a total of 15 new frigates and diesel-electric submarines by 2020, he said in July 2010. The admiral reiterated on Friday that the operational zone of the Black Sea Fleet includes the Mediterranean, and its combat ships must be capable of carrying out anti-piracy missions in the Gulf of Aden.


All Canadian submarines now out of commission.

 The Canadian submarine HMCS Corner Brook prepares to get underway after taking Canadian Prime Minister Stephen Harper onboard for a visit in Frobisher Bay on Aug. 19, 2009. The navy’s last operational submarine is now sidelined until 2016, leaving the service without an underwater capability and potentially throwing into question the future of the submarine fleet. The submarine program, which has already cost around $900 million, has been plagued with various maintenance issues that have prevented the boats from being available for operations on a regular basis. A media report in July noted that one of the subs, HMCS Windsor, arrived in Canada in the fall of 2001 but since then it has operated at sea for just 332 days. HMCS Corner Brook, damaged when it hit the ocean floor during a training accident in June on the West Coast, is now dockside. It will be repaired and overhauled during a planned maintenance period now underway. But it is not scheduled to return to sea until 2016, the navy confirmed in an email to the Ottawa Citizen. HMCS Chicoutimi, damaged by a fire in 2004 that killed one officer, still remains sidelined. That leaves HMCS Windsor and HMCS Victoria, which are also not available for duty at sea.  “The navy is focused on HMCS Victoria and HMCS Windsor and returning both to sea in early 2012,” stated navy spokesman Lt.-Cmdr. Brian Owens in an email. “Trials are already underway with Victoria in anticipation to her returning to sea.” He noted that plans call for Victoria to do a test dive in the Esquimalt harbour on Vancouver Island sometime this month as part of a plan “to verify the submarine’s watertight integrity, and the functionality of other key systems.” But defence analyst Martin Shadwick said the latest news on the four submarines is yet another blow to the program.  “All the arguments the navy made for having submarines 10 or 15 years ago are still fundamentally valid, but they haven’t been actually able to provide the politicians with specific concrete examples because the subs are not available all that much,” explained Shadwick, a York University professor. “That makes the subs a lot more vulnerable to budget cutters in the department and outside of it.” He said the future survival of the submarine force could be put in jeopardy if the problems continue. Canada purchased the subs second-hand from Britain and took delivery of the boats between 2000 and 2004. The navy said it did a thorough examination of the vessels to ensure they meet Canadian needs, but problems with the Victoria-class subs started materializing almost immediately. High-pressure welds had to be replaced and cracks were found in some of the valves on the four subs. Steel piping also needed to be replaced as the submarines were put into storage in Britain with water in their fuel tanks. HMCS Victoria also underwent repairs after a dent was discovered in her hull. In addition, there have been delays in installing Canadian equipment, such as the weapons fire control and communications gear. The subs are still not capable of firing Canadian torpedoes. “The introduction of the Victoria Class has been fraught with many issues and faced a number of setbacks,” a May 2009 briefing note produced by the navy acknowledged. The Ottawa Citizen obtained that document through the access to Information law. In July, media reports citing other navy documents noted the subs are also restricted in the depth they can dive because of rust problems. In June, two sailors were injured when Corner Brook hit bottom near Nootka Sound, off the west coast of Vancouver Island. The boat was conducting submerged manoeuvres during advanced submarine officer training. Owens said navy divers did an initial “in-water” damage assessment of Corner Brook. They found there was damage to the fibreglass bow dome, which Owens noted could mean that there may be damage to the sonar equipment it contains. There was also minor leakage in a forward ballast tank. “The exact scope of the damage, and subsequent repair estimate, can only be derived after a more thorough assessment with the submarine docked and the development of complete repair specifications,” he added. The cost of repairs is not known at this time. HMCS Corner Brook is alongside the dock at Esquimalt and is being used as a training platform for submariners. It is now undergoing an already scheduled maintenance regime in which minimal work is done, such as replacing certain components and doing an engineering survey of what needs to be done during a much more elaborate overhaul called the Extended Docking Work Period or EDWP. The submarine will not go to sea again until after the EDWP. Owens said Corner Brook’s EDWP is scheduled to be complete in 2015-16, making the vessel available for testing, trials and personnel training in 2016.


 Fire in Esquimalt damages Canada's only semi-operational sub.


The Canadian submarine HMCS Corner Brook prepares to get underway after taking Canadian Prime Minister Stephen Harper onboard for a visit in Frobisher Bay in the Canadian Arctic August 19, 2009. A fire on board HMCS Victoria, the Royal Canadian Navy's best hope for an operational submarine, is the latest mishap to plague the used boats which have spent more time undergoing repairs than in the water.


The Canadian submarine HMCS Corner Brook prepares to get underway after taking Canadian Prime Minister Stephen Harper onboard for a visit in Frobisher Bay in the Canadian Arctic August 19, 2009. A fire on board HMCS Victoria, the Royal Canadian Navy's best hope for an operational submarine, is the latest mishap to plague the used boats which have spent more time undergoing repairs than in the water.  A fire on board HMCS Victoria, the Royal Canadian Navy's best hope for an operational submarine, is the latest mishap to plague the used boats which have spent more time undergoing repairs than in the water. The submarine's commanding officer, Lt. Cmdr. Christopher Ellis, confirmed that the fire happened last Tuesday and was contained to the communications mast on top of the sub. It happened during a scheduled radiation hazard survey. One of the submariners on the jetty during the training noticed smoke coming from the communications mast, Ellis said. "There was no indication of smoke or anything inside the submarine," Ellis said, explaining that the mast does not open up to the rest of the boat. "It was a minor fire in that way." The submariner alerted the six crew members inside the submarine and called the Canadian Forces Base Esquimalt Fire Department, he said. Three duty members aboard the sub took emergency precautions, isolating the high-powered systems on the submarine and making sure everyone got off the vessel safely. Firefighters used a ladder truck to spray water to extinguish the fire in the communications mast, Ellis said. The communications mast looks similar to a periscope and is used to communicate with other ships, aircraft and personnel on shore. What caused the problem is not yet known but it's suspected to have been an electrical fire, Ellis said. The communications mast can be replaced in a matter of days, Ellis said. "All training can be carried out as planned. The only thing this will delay slightly is our communication trials." Ellis said it's better to know about a problem with the communications mast now, rather than while out at sea. HMCS Victoria was placed in Esquimalt Harbour in April after five years in dry dock during a $195-million overhaul. It is set for sea trials later this year, Ellis said, and next year will be the first Upholder-class submarine to fire an MK-48 torpedo. It's the navy's only semi-operational submarine, as the other three undergo repairs. HMCS Corner Brook was damaged when it hit the ocean floor during advanced officer training in June off Nootka Sound on the west coast of the Island. It is now dockside at Canadian Forces Base Esquimalt and will be repaired during a planned maintenance period, which will keep it sidelined until 2016. HMCS Windsor is on the East Coast, undergoing repairs and is set to return to sea in 2012. HMCS Chicoutimi was damaged by a fire in 2004 that killed an officer and remains out of commission until at least 2012. The navy's submarine program has been fraught with problems since the diesel-powered submarines were purchased from Britain in 1998. They have already cost taxpayers $900 million and have had few opportunities to show their mettle while constantly undergoing repairs.


New attack sub docked at China's navy base in Hainan Island.

At least one new Type 093 nuclear-powered attack submarine was docked at a Chinese navy base in Sanya, Hainan Island, in early September, a photograph obtained by Kyodo News by Wednesday showed.  While it was reported in China that the People's Liberation Army Navy late 2006, the photograph marks

the first time for the whereabouts of the submarine to be visually confirmed, according to Ping Kefu, a Hong Kong-based military analyst.

Ping said the PLA appears poised to advance the navy to the Indian Ocean and South China Sea and to form an aircraft carrier fleet in the future

at a time when the navy seeks to expand its sphere of influence in the East China Sea, including areas around the disputed Senkaku Islands, and

the South China Sea.  The islands -- administered by Japan but claimed by China and Taiwan -- become the source of a recent diplomatic row between Tokyo and Beijing, the worst in years.  The photograph, taken on Sept. 2, shows two nuclear-powered submarines docked at a quay in the base, which belongs to the South China Sea Fleet in Zhanjiang, Guangdong Province.  One submarine was confirmed to be a Type 093. Experts believe the other is also a Type 093, but said it is difficult to determine because the image for the second one is unclear. It was found in 2008 that the PLA Navy deployed a ype 094 "Jin-class" ballistic missile submarine capable of loading nuclear missiles at the same base. An expansion in deployment of nuclear powered submarines by the navy is likely to increase a sense of alert by Southeast Asian countries that have territorial disputes with Beijing in the South China Sea, and India.

Measuring about 110 meters in length, the Type 093 submarine excels in striking power and silence in navigation, according to military experts. It is said to perform on par with Russia's Victor III-class submarine. China began construction of the PLA Navy base in Sanya around 2002 because water in surrounding areas is deep, making it difficult for submarines to be detected, the military experts said. The country has nearly completed a large underground facility for nu ear-powered submarines, and the navy appears to be moving major vessels into the base. The experts believe the base will be a strategic point for an aircraft carrier fleet in the future. However, the PLA so far has released little information about the base.


Chinese PLAN Latest Type 041Class Yuan Diesel-Electric Submarines SSK


Although not nearly as "shocking" as the recent photo release of the PLAAF's J-20 stealth fighter, the first definitive photos of the latest Type 041 (NATO designation: Yuan) class diesel-powered submarines (SSK) nevertheless shed light on another critical asset of the PLA's modernization efforts. While the exact new features of these 2 SSKs remain predictably shrouded in secrecy, some PLA enthusiasts have speculated that the new SSKs will include new sonar and surveillance systems, some have even speculated that the newest models will be capable of vertically launching cruise missiles from their lengthened sails - the most noticeable new feature of the latest 2 Yuan Class SSKs being constructed in Wuhan. It is also widely believed that the Yuan Class SSKs include air-independent propulsion systems on board (as subtly implied by a PLA Daily article dated 23 Oct 2009), allowing for quieter patrols of longer endurance.


South East Asian subsea defence highlighted in UDT conference.

The radically contrasting subsea defence needs of two nations were highlighted in the day two plenary capability session of the UDT conference, which was staged in ExCeL London on Wednesday 8th JuneSpeaking in a scenario dedicated to South East Asia, David Nicholls of the Submarine Institute of Australia described the factors involved in his country's decision to replace the six Collins-class submarines currently used by the Royal Australian Navy with 12 new vessels by 2025. The project to build the submarines will be the largest, longest and most expensive defence acquisition ever undertaken by Australia and comes at a time when regional navies such as those of Indonesia, China and India are seeking to dramatically expand their submarine fleets, potentially altering the balance of naval power in the region. The identified needs include optimising crew conditions for prolonged blue water operations and making maximum use of automation. Captain Luis Alba of the Embassy of Peru set out a markedly different scenario. While Peru, like Australia, has deep water considerations, the emerging threats are present in brown water areas. Self-propelled semi submersibles are recognised as a means of terrorist submarine attacks, but drug smugglers linked to the FARC guerrilla organisation are already using them to transport huge quantities of cocaine. Additionally, the construction of the Trans-Oceanic Highway linking the northern and southern ports of Peru with Brazilian ports will generate more maritime traffic in the area, bringing with it the threat of increased piracy.  Captain Alba stated that the ability to operate near the coast is very important and challenging, with difficulties including the shallowness of the waters and the high probability of the defence forces assets being exposed. The use of scenarios as a plenary session is a new feature of UDT. Judging by the enthusiastic response of the agenda.


Colombia navy seizes drugs submarine.

The Colombian navy has seized a submarine modified by drugs smugglers to carry up to eight tons of cocaine to Mexico. The ocean-going, submersible vessel was ready to embark on its maiden voyage, and is capable of travelling long distances. "It is the first submersible to be seized in the country," said General Jaime Herazo. The raid was made on Sunday in the remote jungle region of Cauca, close to the Pacific coast, where the submarine was hidden on a river. The captured vessel "can travel up to 9 metres (depth) underwater," Gen Herazo added, and costs an estimated £1.32 million. The vessels can reach speeds of around 11mph. Made out of fibreglass, the submarine has the capacity to carry four crew members. Narco submarines, as they are known, are designed specifically to be nearly undetectable visually or by radar, sonar and infrared systems because they travel just below the surface of the water. Gen Herazo believes that the ship belongs to "narco-traffickers coupled with narco-terrorists, who received a heavy blow [due to its capture]". However, no arrests have been made in connection to the discovery, which resulted from a joint operation by the Colombian navy, air force and the inspector general.


France in violation because of the OECD Convention.

However, in the suit filed in December 2009, the plaintiffs argued, that in light of the way the company operated, …“there is no doubt that this legal entity (Perimekar) was created with a single goal: to organise the payment of commission and distribute the amount amongst the different beneficiaries – Malaysian officials and/or Malaysian or foreign intermediaries.” However, this contract was signed after the OECD Convention came into force in France in 2000, which punishes corruption of foreign public officials with 10 years imprisonment and a 150,000 euro fine. Following this complaint, a preliminary investigation was conducted by the prosecution: the hearings were made and searches were made at the premises of DCNS and Thalès. Revealed in September 2008, the note books of Gérard-Philippe Menayas, former chief financial officer of the DCN, who was indicted in the Karachi Case, also confirmed the suspicion of hidden commissions. In his memorandum (PDF), Menayas mentioned the Malaysian submarine contract as follows: “Since the entry into force of the OECD Convention regarding the fight against corruption in September 2000, only two contracts have been signed; the first with India, and the second with Malaysia in 2002. These two contracts are the result of commercial actions undertaken prior to the OECD Convention. Furthermore, they are both suspected of non-compliance with this Convention. I have evidence to support this.” At the time of the contract’s signature, Alain Richard was the minister of defence, in Lionel Jospin’s government (Socialist Party).

Three commissions instead of one.

With the forthcoming indictment, and the revival of this case, new items had been contributed to the case by the plaintiffs. First, according to sources cited by the plaintiffs, it was not the company Armaris that paid 114 million euros to Perimekar, but rather the Malaysian government, “with the sole purpose of circumventing the OECD Convention”. This is a true revelation, while the Malaysian (deputy) minister of defence ended up “confessing” to the payments made by foreign companies to Perimekar. Where did this money go? Were there retrocommissions to French politicians? Secondly, there appeared to be not one, but three commissions. In addition to that of 114 million euros, there are two further instalments: • one paid by the DCNI to the commercial networks of Thalès, for over 30 million euros, corresponding to “commercial fees relating to the negotiation and execution of the contract”; the other for 2.5 million euros. However, according to Gerard Philippe Menayas: “Until the OECD Convention against corruption came into force in France, no contract for the sale of defence equipment to an emerging country could take place without the payment of commissions to policy-makers (euphemistically called ‘commercial fees for exports’ or ‘FCE’).” The second commission was paid by Thalès to a recipient, who remains unknown, in order to convince the Malaysian government of the need to conduct additional work. Finally, according to the complaint filed by the firm Bourdon, Suaram’s lawyer, the company Gifen, which was established by Jean-Marie Boivin in Malta, intervened in the negotiations “so as to facilitate the money transfers in this case”, and particularly finance the trips of Baginda and Altantuya. The “catch” is that Jean-Marie Boivin is also cited in the Karachi case… for his role in the system for supplying slush funds to political parties

Chilean Stealth Sub Visiting San Diego.



The Chilean navy's Carrera, a diesel-electric submarine, has arrived for a training mission with the 3rd Fleet in San Diego, Navy Times reports. The latest generation of diesel-electric subs, with their unusual stealthiness and relatively low price have become troublesome for U.S. defense planners. As smaller countries acquire more of them, safe access for U.S. ships to world coastal areas and the high seas could be jeopardized, the Pentagon argues. "Once they have powered up their batteries, the submarines can sail to the bottom of coastal waters and remain undetected for days," says an account in National Defense Magazine. "Though they can’t travel long distances or sail very quickly, advancements in technologies, such as air-independent propulsion and fuel cells, have allowed diesel submarines to extend their operational ranges underwater. "But perhaps their best selling point is their relatively inexpensive price tags. The Russians have sold diesel submarines for as little as $200 million and the French have exported their Scorpene submarines for $300 million." "China’s new Song-class diesel submarines have tracked U.S. Navy ships operating in the seas near Japan and Taiwan. Last November, after China denied the USS Kitty Hawk’s port call in Hong Kong at the last minute, a Chinese submarine shadowed the carrier as it entered the Taiwan Straits on its return voyage to Yokosuka, Japan.  "In the late fall of 2006, a Song-class submarine surfaced within torpedo range of the Kitty Hawk* off the coast of Okinawa, Japan." According to the account in Navy Times, the current San Diego visit will allow the U.S. to "train its submarine crews as well as surface ships, patrol squadrons and other units to hunt and operate with the foreign subs."


Rusty submarine remains on the seabed.

The wreck of the Russian nuclear powered submarine K-159 is still corroding on the bottom of the Barents Sea. On August 30, it is six years since the submarine sank near the Kildin Island north of Murmansk, an area important for both Russian and Norwegian fisheries.  K-159, a November-class submarine taken out of operation from the Soviet Northern fleet in the late 80-ties, sunk in bad weather while being towed. Nine sailors died when the sub went down, just before the inlet to the Kola Bay in the early morning of August 30, 2003. The submarine was on its way from the Gremikha naval base to the naval yard in Polyarny where it was supposed to be decommissioned. The two nuclear reactors onboard still contain the highly radioactive spent nuclear fuel rods. Due to the lethal inventory of the reactors, and the on-going corroding process on the already rusty hull, the submarine is considered to be one of the most dangerous objects in the Arctic Oceans.After K-159 sunk in 2003, the Russian naval command promised to retrieve the submarine sometime in 2004. But 2004 past without lifting the sub, and since then new lifting plans have been postponed, and again postponed. In 2007, wrote that the St. Petersburg based design and engineering company Malakhit got the order to prepare the lifting plan. Bellona’s website wrote last year that in December 2007, the chief of environmental safety for the Russian military, Alevtin Yunak, promised at a meeting between the government and the Military Industrial Commission that the decision would be made by the beginning of 2008. Also in 2007, a British Ministry of Defense salvage team said they would examine the submarine’s two reactors before deciding whether it could be raised from the depth of 238 meters. Interviewed by The Sunday Times, project leader for salvage and marine at the British Defense Logistics Organization, Morgyn Davis, said there’s an element of fear of the unknown here. Davis’ team is consulting the Russian authorities regarding K-159. The first thing to do is to get down to the wreck in remote-control submersibles, cut the pontoon wires around the submarine and put sensors on to check for radiation. We think it is flooded with water, so raising it like that, from that depth, would be very difficult, Davis said to The Sunday Times. As reported by in 2007, radiation monitoring of the sunken submarine started within the framework of the Arctic Military Environmental Cooperation (AMEC). So far, no radiation leakages are reported from K-159. K-159 is not the only nuclear powered submarine on the seabed in the Arctic Oceans. On April 7, 1989, the prototype submarine Komsomolets sunk south of the Bear Island in the Norwegian Sea. Laying at more than 1600 metres depth, is is slowly corroding with its single nuclear reactor and two nuclear warheads. Also in the Kara Sea, east of Novaya Zemlya, old submarines and reactor compartments have been dumped in the sea on purpose. Six reactors with spent nuclear fuel and 10 reactors where the fuel were removed before the dumping are located at different locations along the eastern coast of Novaya Zemlya. All the reactors were dumped because they have been involved in accidents and posed a radiation risk if stored at any of the Northern fleets naval bases at the Kola Peninsula or decomissioned at any of the navbases on Kola or in Severodvinsk in the White Sea. There are currently no plans to lift the dumped Kara Sea reactor compartments. Several studies have concluded that trying to lift the Komsomolets submarine pose a bigger risk than just leaving it at the seabed. The reactor and two plutonium warheads onboard Komsomolets are partly sealed off to avoid radiation from leak out of the sunken submarine.


Russia to decide fate of sunken nuclear subs.

Russia must soon decide what to do with two sunken nuclear submarines in the Barents and Kara seas in order to avoid potential radioactive pollution of the area, a senior Russian nuclear official said on Monday. - We must decide as soon as possible whether we will lift these subs or bury them completely on site, Ivan Kamenskikh, deputy general director of Russia's nuclear corporation Rosatom, said at a conference on board the Yamal nuclear icebreaker, RIA Novosti reports. The two submarines in question are the November class nuclear submarines B-159 (K-159), which sank in the Barents Sea in August 2003, 248 meters down, with nine of her crew and 800 kilograms of spent nuclear fuel, while being moved for dismantling and the K-27, which was dumped in the eastern Kara Sea in 1982. The latter was an experimental attack submarine built in 1962 and decommissioned in 1979 due to its troublesome nuclear reactors. Her reactor compartment was sealed before the sub was dumped at a depth of 33 meters. I think the issue should be resolved in 2012. To lift them will cost a lot of money, but we must decide on their fate now to make sure that in the future we will not have problems with radioactive pollution of the areas where these subs are located, Kamenskikh said, adding that at present radiation levels at the wreckage sites are normal. The official also said that the wreck of a third sunken submarine, the K-278 Komsomolets, will most likely remain at the site of the accident forever, as the salvage operation will be too costly and dangerous. This submarine sank in the Norwegian Sea on April 7, 1989, south of the Bear Island. The submarine sank with its active reactor and two nuclear warheads on board, and lies at a depth of 1,685 meters.

Russia's New Attack Sub Starts Sea Trials.

The submarine, named “Severodvinsk” after the city where it is built, is currently undergoing harbour trails at the construction yard Sevmash. "Severodvinsk" is said to be the most silent submarine ever built, making it difficult to detect by other naval vessels or other states subsea detection systems. Construction of “Severodvinsk” started back in 1993, but was halted due to financial setbacks. The last nuclear powered attack submarine launched from Sevmash naval yard was in December 2001, when “Gepard” – a Akula-class submarine  - was delivered to the Northern fleet. The new submarine will undergo sea trails during the summer, and will enter service with the Russian Navy by the end of the year, reports RIA Novosti. Most likely, "Severodvinsk" will be based on the Kola Peninsula and operate in the Barents Sea and North-Atlantic. Severodvinsk is the first of the new Graney-class submarines. Construction of the second vessel of the class, named "Kazan", started in 2009. The new submarine will be the most heavily armed multi-purpose submarine sailing in northern waters. Its armament includes 24 cruise missiles, eight torpedoes in addition to mines and anti-ship missiles.


R300m to secure South African submarine deal.

Johannesburg - German industrial company Ferrostaal allegedly paid R300m to secure the sale of submarines to South Africa, the Citizen reported on Friday.
This was amongst the claims made by an internal audit of the company by American-based law firm Debevoise and Plimpton. The law firm was hired to "clean up" Ferrostaal following a series of corruption scandals and the arrest of one of its board members by the German Public Prosecutions Authority last year. Ferrostaal said it would not release the Debevoise and Plimpton report. On Thursday a German newspaper, Sueddeutsche Zeitung, claimed it had a copy of the report. "I to state that Ferrostaal has been taking great efforts to clear up allegations of non-compliant behaviour in the past," Ferrostaal spokesperson Maria Lahaye-Geusen said. In the article, Lahaye-Geusen did not deny the allegations that payments were made to South Africa in return for arms deal contracts but the company has previously denied the claims. She said Ferrostaal would co-operate with and assist South African prosecutors if approached. In 2008 the Sunday Times reported that Ferrostaal allegedly gave former president Thabo Mbeki R30m in bribes and that, after sharing this with Jacob Zuma, before he became president, Mbeki gave some of the money to the ANC as a donation. Mbeki has also denied the claims.


Polish Navy chose French Scorpène class submarines.

The French shipbuilding group DCNS is to build new Scorpène submarines for the Polish Navy. An Agreement on the joint with the Polish shipyard Stocznia Marynarki Wojennej SA construction of submarines was signed in late March. France has also pledged to train the crews of the submarines. The naval forces of Poland now have 41 combat units, the most significant of which are two guided missile frigates, three small rocket ships, a corvette and five submarines. The submarines will be the first new ships purchased by the Polish Navy during the last two decades. Frigates Gen. K. Pulaski and Gen. T. Kosciuszko type Oliver Hazard Perry were built in the U.S. in 1980 and handed over to Poland in 2000 and 2002, respectively. The four Kobben submarines were built early 1970s were transferred to Poland from Norway. The youngest submarine in the Polish Navy is a Soviet-built diesel-electric submarines Orzel Project 877E "Varshavyanka" - it was handed over to Polish Navy in 1986.
Currently, Scorpène submarines serve in the Navy of Brazil, Chile, India, Malaysia. The cost of construction of one ship is about $ 450 million.


Russian Navy to get bulk of new generation nuke-fighting submarines.

Ten nuclear Yasen-type submarines are scheduled to be constructed in Russia in the next nine years, as part of the state arms program through 2020. The new generation submarines are capable of combating both other submarines below the surface and weapons on the surface, including aircraft carriers.  The Yasen submarine’s length is 119 meters. It weighs in at 13,800 tons, with a cruising capacity of 100 days. The submarines can go up to speeds of 31 knots. It can be equipped with supersonic high-speed missiles and torpedoes, including nuclear weapons and “Onyxes.”  “This type of submarine was previously unknown in Russia,” Andrey Frolov, from the Center for Analysis of Strategy and Technology, told RT. “It’s multifunctional and can be used to attack carrier forces. In Soviet times, they had to use two different types of submarines, but Yasen is uniting them.” Initially it was planned that Russia’s Navy would get 30 such submarines, but later the number was cut down to only six due to a lack of funds. Now the authorities are sticking to 10.  The first submarine is expected to hit the water by the end of 2011. Its construction started in 1993. The second submarine, based on a modified Yasen-M project, was begun in 2009.


Scientists begin righting a Confederate submarine.

Scientists in South Carolina began the painstaking job Wednesday of righting the Confederate submarine H.L. Hunley, which sank on its side during the Civil War after becoming the first sub in history to sink an enemy warship. Workers rotated the famed submarine by about 10 degrees by midafternoon Wednesday in a delicate effort that is expected to take two days to complete. The Hunley was resting on its side at a 45-degree angle when it sank off Charleston in 1864 and was raised in slings that way 11 years ago. The hand-cranked sub and its crew of eight went down after sinking the Union blockade ship Housatonic but why it sank remains a mystery. Rotating the sub upright and removing the slings will reveal the entire hull for the first time in nearly 150 years and may provide clues as to its fate. But Paul Mardikian, the senior conservator on the Hunley project, doesn't expect to see any obvious clues once the sub is upright and the slings obscuring the hull are removed. "I don't think there have been any smoking guns on the submarine so far. We were expecting we would find a quick answer 10 years ago. But I think it's more subtle," he said. He said any new clues will probably have to wait until the sediment encrusted on the hull is removed, a process that will take a year or more. When the sub was raised, there were 15 slings supporting it. Last week, the Hunley was raised 3 feet from the bottom of its water-filled conservation tank and in recent days half the slings were removed. The remaining slings were fitted with sophisticated sensors which can tell how much weight each is supporting. Workers lined the inside of the drained 90,000-gallon conservation tank on Wednesday and periodically eased the tension on the remaining slings as the Hunley was slowly rotated toward an upright position. Once upright, the sub will be supported by keel blocks beneath the vessel. "Everything's going according to plan," said Mardikian who noted it took several years modeling the delicate process of righting the sub both in a computer simulation and using a model of the hull.Theories as to why the Hunley sank include that it was damaged by fire from the Housatonic or the crew was knocked out by the concussion from the blast that the ship. It may also have been damaged by another Union vessel rescuing the Housatonic. Studies showed the crew died of a lack of oxygen, which can overtake a person very quickly. The remains of the crewmembers, who were buried in 2004 in what was called the last Confederate funeral, were found at their stations and there seemed no rush to the escape hatch. At the time of its development, the Hunley was considered a secret weapon developed to try to break the Union blockade that held the South in a stranglehold. It would not be until World War I that submarines were commonly used in warfare.


Sailors feared worst as submarine HMAS Farncomb sank.

JUST after midnight off the coast of Perth, navy submarine HMAS Farncomb was slicing below the surface of a rough sea when its engines cut out. For the 60 men and women aboard the Collins-class boat, the next few minutes would be among the longest of their lives. Like a Hollywood thriller, the sailors found themselves grappling with a double engine failure followed by a terrifying, powerless descent towards the bottom of the Indian Ocean, stemmed only by the cool actions of a veteran commander. This real-life drama, which took place at 12.30am on August 23 about 20km off the northwest coast of Rottnest Island, was not revealed by Defence at the time. When quizzed by The Australian the following day, officials gave only a brief, sanitised version of the incident, omitting key facts while praising the competence and training of the crew for following "standard operating procedures".


Nuclear subs buy for Australia.

AUSTRALIA could buy 10 of the latest nuclear attack submarines from the US for much less than it would cost to build 12 conventional replacements for the Collins-class boats, says the Kokoda Foundation think tank.  Foundation founder Ross Babbage said the submarines could operate with US boats sharing an Australian naval base and they could be maintained by US nuclear experts. Dr Babbage, a member of the government's advisory panel for the 2009 Defence white paper, told The Australian 10 of the US Navy's new Virginia-class attack submarines could be bought and equipped for a total of $28 billion. While the white paper called for 12 new conventional subs, it gave no estimate of their likely cost. But Andrew Davies, of the Australian Strategic Policy Institute, has calculated that they would cost about $36bn and that figure has not been challenged by the government. In the past, apart from political and social objections to nuclear power, key submarine experts have dismissed the idea of Australia opting for nuclear subs because of an expected high cost and because the nation has no nuclear industry to repair and maintain them. Dr Babbage said a dramatic step, such as taking this nuclear option, was necessary as evidence emerged of China's rapidly increasing military power. "Australia needs to consider purchasing 10-12 of the United States' latest nuclear powered attack submarines in order to balance, offset and deter the dramatic expansion of China's military capabilities," he said. "China's massive military build-up is clearly designed to force the US and its allies out of the western Pacific. "Key Australian security interests are being challenged." A combined force of Australian and US nuclear submarines sharing a base in Australia would send a very strong message to China's military leaders, he said. At the AUSMIN talks between Australian and US defence and foreign affairs ministers in Melbourne last year, the two governments agreed to a stronger American military presence in Australia, with US forces to share bases and store equipment here. Buying boats from a "hot" production line would greatly reduce the likelihood of delays, cost blowouts and problems with technology, Dr Babbage said.


Urgent submarine defects shame Australian navy.

MORE than 40 serious defects have been discovered on one of the navy's Collins-class submarines during the past six months, highlighting the growing challenge of keeping the fleet seaworthy. The defects, described as "urgent", have been found aboard HMAS Dechaineux, which limped back to Perth 10 days ago from Singapore after problems were discovered in the boat's propulsion system. The problems forced Dechaineux to cancel its involvement in a five-power defence exercise in the South China Sea last month. The navy then suffered further embarrassment when its newspaper, Navy News, printed a fictional pre-written report that gave a glowing account of Dechaineux's performance during the exercise when in fact the submarine was stranded in port in Singapore. The Australian revealed yesterday that none of the six Collins-class submarines was able to be put to sea, with four submarines in long- or medium-term maintenance and its two remaining "operational" submarines, Dechaineux and Waller, currently undergoing inspections for mechanical problems at HMAS Stirling in Perth. Navy chief Ray Griggs said yesterday the two submarines "were currently in their operating cycles" but declined to say whether they were immediately deployable. "The Collins-class submarine is a complex capability," he said. "As with any piece of complex machinery operating in a harsh environment, unscheduled mechanical failures will occur." The $10 billion Collins-class fleet has been undermined by breakdowns, accidents and the vessels' growing unreliability. Opposition defence spokesman David Johnston said yesterday: "Our broken submarine fleet is of enormous concern. At a total cost of operating, sustaining and upgrading our submarines fast approaching $800 million per year, we are not getting much in return. The minister needs to sit up and take notice that our broken submarine fleet is no longer a maintenance issue but an issue of national security." Australian Defence Force chief Angus Houston has warned that the Collins-class fleet was ageing and this would have an impact on the availability of the boats. "The fleet of submarines is going to take a lot more maintenance than it did back in (former defence minister) Robert Ray's time when it was brand new, or back five or 10 years when it was travelling really well," Air Chief Marshal Houston said in a Senate estimates hearing in February last year. A Senate estimates hearing heard last week the fleet now costs more than $1m a day to maintain. When they were built in the 1990s, it was envisaged that four submarines would be available at any one time, with two in maintenance. Recent reality has seen an average of one or two submarines available at any one time. The government plans to build 12 new submarines to replace the Collins fleet in the 2020s, but critics say this project is behind schedule and the life of the Collins fleet may need to be extended.


Thai Defence Council approve submarines.

The Defence Council on Monday approved the navy's plan to buy six used Type U206A submarines from Germany for 7.7 billion baht. Defence spokesman Col Thanathip Sawangsawng said navy chief Adm Kamthorn Poomhiran  spent one hour and 40 minutes explaining the acquisition plan to the council, chaired by Defence Minister Prawit Wongsuwon. Council members were satisfied with the reasons given by the navy for the purchase - to protect the country's interests in the sea, to increase the Asean submarine force potential and to help keep military power in the region in balance. If the acquisition plan is also approved by the cabinet, the submarines are expected to be put in commission in mid-2013. Col Thanathip said a detailed plan will be presented to the Defence Council for next month.  A special conference may also be held for the press. The Defence Ministry will push for cabinet approval of the plan as soon as possible, he added.


No funds to deal with UK’s dead nuclear submarines: public at radiation risk.

Nuclear weapons sites cuts put public at risk, says watchdog, The Guardian, 12 Jan 2011, Staff shortages and funding cuts at nuclear weapons sites across the UK have put the public and the environment at risk, according to the Ministry of Defence’s nuclear safety watchdog. The analysis, marked “restricted”, points to 11 “potentially significant risks” at bomb-making sites and ports housing nuclear submarines, documents seen by the Guardian show. They warn that efforts to reduce radioactive risks have been “weak”, safety analyses “inconsistent” and attempts to cope with change “poor”. Formal regulatory action has been taken at two naval dockyards: Devonport in Plymouth and Barrow-in-Furness in Cumbria. decommissioning of Britain’s 16 defunct nuclear submarines. Nine are moored at Devonport and seven at Rosyth on the Firth of Forth. The reports cover 2006 and 2007 and were written by Rear Admiral Nigel Guild, chairman of the defence nuclear environment and safety board, an agency within the MoD that oversees nuclear safety. They were released in response to requests under the Freedom of Information Act. According to one former MoD official, nuclear safety had been compromised. Fred Dawson, who worked for the MoD for 31 years and was head of its radiation protection policy team before he retired in 2009, described the absence of funds for decommissioning nuclear submarines as “particularly damning”.


Cocaine Bust: $180M Captured From Drug Trafficking Submarine.

Authorities in the U.S. have recovered about 15,000 pounds of cocaine from a sunken submarine vessel cunningly used by smugglers new Honduras. The find is estimated to be worth approximately $180 million. The submarine-like vessel was captured by the crew of the Coast Guard Cutter Seneca on July 13. The smugglers onboard were detained and a large portion of the drugs were recovered before the vessel sank to the bottom of the ocean. A mass operation involving several Coast Guard cutters, the Honduran Navy and FBI dive teams then searched for the vessel and drugs, and they were finally discovered on July 26, Reuters has reported. The massive haul has taken three day to recover to the surface. Lieutenant Commander Peter Niles, commanding officer of the Coast Guard Cutter Oak told Reuters: “This is a once-in-a-career thing that happens.” The coast off of Honduras is a hot-bed for drug trafficking by Mexican and Colombian drug cartels, who use the submarine-like vessels to transport tons of drugs thousands of miles under the radar of law enforcement agencies. The vessels are designed to sink rapidly if found by authorities, so that that the illegal cargo can drift to the ocean floor; making it near-impossible in many cases for law enforcement agents to recover. Experts have expressed amazement at the technical expertise used in the submarines’ design and construction. The boats are built specifically for the drug trade. Commander Charles Fosse, commanding officer of the Seneca has commented on the successful interception of cocaine: “Our mission out here in the Caribbean is to keep drugs from crossing our borders and making our communities (back) home safer. It's very satisfying for the crew.” Experts have no idea regarding the number of submarines currently shipping tons of cocaine from Colombia, however, it is known that even one delivery of eight tons puts hundreds of millions of dollars into the hands of cartel leaders.


Argentina Plans For Nuclear Propulsion Diesel Submarines.

Argentina is considering the development of "nuclear propulsion" for its diesel-engine submarines, Defence minister Arturo Puricelli said. The initiative follows a request from President Cristina Fernandez and is closely linked to Brazil's construction of a first nuclear powered submersible with French technology. "President Cristina has requested us to come up with a nuclear propulsion development project for our submarines" said Defence minister Puricelli during a press conference. He added that Argentina had the "capacity to develop nuclear propulsion for submarines". "This means that when the submarine "ARA Santa Fe" which has been waiting for some years leaves the shipyard she will not do it with its original propulsion but with nuclear propulsion developed in Argentina", the Defence Ministry clarified in a statement following the minister's announcement. Puricelli also revealed that another submarine "ARA San Juan" is already half re-furbished, "after spending years virtually idle and non operational". The Argentine project for a "submarine with nuclear propulsion and conventional weapons" was actually launched a year ago when it was anticipated that Argentina was working on the possibility of developing a nuclear reactor to install in submarines, defence sources said. Argentina's National Atomic Energy Commission and the National Institute for space and nuclear technology apparently have already finished designing the CAREM reactor so that it can be adapted to the prototype of the future submarine -the TR model - one of the three that were purchased by Argentina in the eighties from Germany's Thyssen. Still partly in crates in the Domecq Garcia shipyard the "ARA Santa Fe" apparently has been 75% assembled after spending over two decades "resting" in dozens of containers. Latest estimates are that it should be ready as a conventional submarine for 2015 and from then on efforts will be concentrated in the instalment of the nuclear reactor. However there have been warnings from undisclosed Argentine naval sources which consider the project 'pharaonic and disproportionate' given current budget resources for Defence plus the fact that the TR hull is "unviable in space and density to lodge a nuclear reactor". Nuclear power allows submarines to move faster and have greater autonomy than those propelled by the conventional diesel-electric engines, defence sources said. In mid July Brazil formally announced the beginning of the construction in Rio shipyards of the first of four conventional French Scorpone submarines, at a cost of US$565 million each, which should be operational by 2016. Following on the conventional units Brazil will begin the construction of its first nuclear powered submarine with French technology, as a result of the nuclear cooperation agreement signed by President Nicholas Sarkozy with his counterpart then, Lula da Silva. Brazil is beefing up its naval (surface and submersible) and air resources in anticipation of the development of its massive offshore hydrocarbons resources, defence sources said.


The Japanese Navy included five midget submarines in the Pearl Harbor raid of 7 December 1941.

Transported on board large I type submarines, the midgets were launched near the entrance to Pearl Harbor the night before the attack was to begin. One, spotted trying to enter the harbor before dawn, was attacked and sunk by USS Ward (DD-139) in the first combat action of the as yet unopened Pacific War. At least one of the midgets was able to enter the harbor and was sunk there by USS Monaghan (DD-354). Another, the Ha-19, unsuccessful in its attempts to penetrate Pearl Harbor, drifted around to the east coast of Oahu and was captured there the day after the attack.




The Trail of Corruption in The Case Karachi.

The trail of a corruption scandal during the presidential campaign of 1995, may involve Nicolas Sarkozy, has been confirmed by court hearings, including that of a former minister. The case is linked to a suicide bombing in Karachi, May 8, 2002 in which 15 people died, including 11 French engineers and technicians from the Directorate of Naval Construction (DCN), working in the construction of submarines. Former Defence Minister Charles Millon (1995-1997) stated on record that Jacques Chirac ordered his election in 1995 after the termination of the payment of commissions pseudo-business in Pakistan in conjunction with the sale of these sub- sailors, “said a source close the file. “Charles Millon told the judge that the decision had been taken because of the existence of retro-commissions (fraudulent return of a portion of the money in France, Ed),” said the source who had access to the trial record of the hearing by the magistrate Renaud Van Ruymbeke. The track initially referred to the Islamist attack was abandoned and a variety of information, but no evidence suggests that the Pakistani army ordered the attack in retaliation for non-payment of remaining fees. Charles Millon told the Judge Van Ruymbeke that the DGSE – the French intelligence services – had been charged with a survey of retro-commissions and reported directly and orally to Jacques Chirac and Dominique de Villepin Secretary General. The Socialist opposition has responded by requesting a hearing of these two men. “Former President Chirac and Dominique de Villepin, who ended a device that they themselves had deemed illegal, must connect to justice the elements they have,” said in a statement Jean-Marc Ayrault, Chairman of the PS group in the National Assembly. President Francois Bayrou Modem has asked his side on France 2 the lifting of military secrecy, already partly achieved by the judge investigating the bombing Marc Trévidic. “This can not go on like this, we must rid the French politics of suspicion, he must raise the defence secret,” he said. Charles Millon had already mentioned these facts in the press when he told Paris Match this year it was discovered that the “retro-commissions” had financed the presidential campaign of Edouard Balladur, a rival to Jacques Chirac in the right the presidential race in 1995. Moreover, another witness heard by Judge Renaud Van Ruymbeke, Gerard Menai, former leader of the DCN, confirmed that the commission passed by Luxembourg, where two companies, Heine and Eurolux had been created for this purpose. This witness, the source familiar with the matter, confirming other elements of the court record, including a report from the Luxembourg police, according to which Nicolas Sarkozy, then Minister of Budget (1993-1995) and spokesperson of the campaign Balladur, had organized this transit in Luxembourg. Menai Gerard also said to Judge Van Ruymbeke that former leaders of Luxembourg companies in question attempted in 2006 to get money, to ’sing’ Nicolas Sarkozy on the basis of this case. A parliamentary fact-finding mission showed that the payment of 84 million euros, or 10.25% of the contract for submarines, had been agreed at the signing of the agreement for the sale of submarines by the government Balladur in 1994. Nicolas Sarkozy denies any involvement in a corruption case and spoke publicly of “fable” about the supposed link between money and attack.


End of an Era as submarine is retired after 32 years' service

The end of an era at Devonport Naval Base when the last of the class of Swiftsure attack submarines was retired after 32 years' service. HMS Sceptre was formally decommissioned at a special ceremony which saw tributes paid to her role, and the hundreds of submariners who served onboard. Commander Steve Waller, the 16th and final commanding officer of the vessel, said the occasion marked more than the end of a submarine in service, but also the end of an era of Swiftsure submarines. He said: "This is a momentous occasion, as it marks the last of the Swiftsure Class. "It is a sad moment, but we should also use it to remember and celebrate the achievements of the submarine and of the men who have between them protected the UK's interests for 32 years.  In the last nine months of service, including a long deployment, the boat has lost only six days due to faults. HMS Sceptre, a nuclear-powered submarine, entered service in 1978 and it is estimated around 1,500 men have served on board during her time



Chinese Yuan-class submarine docked naval naval

A Chinese Yuan-class submarine docked.

China military-industrial sector has seen a breakthrough technology in the AIP submarines.  At present, Germany, Sweden and Russia already have a mature AIP technology. Now China's military-industrial sector has also developed its own AIP technology. For example, the Chinese Navy's newest type of "meta" class submarine with AIP system installed, its endurance and concealment will be increased dramatically.


Portuguese Navy Submarine.

The second Class 209PN submarine for the Portuguese Navy was delivered and commissioned on December 22nd 2010 on the premises of Howaldtswerke Deutsche Werft, a company of ThyssenKrupp Marine Systems in Kiel.

The new submarine named NRP Arpão is equipped with an air independent fuel cell propulsion system and combines the proven design principles of the Class 209 family with the innovative features of Class 214. Ultra modern sensors and an integrated Command and Weapon Control System make it optimally suited to its future reconnaissance and surveillance tasks.

The contract on the two Class 209PN submarines was signed in 2004 with the Portuguese State. Start of production for NRP ARPÃO was end of 2005, the naming ceremony took place on June 18th 2009.

The sister boat of NRP ARPÃO, the NRP TRIDENTE, was delivered earlier on June 17th 2010. It has been in operation by the Portuguese Navy since its arrival in Lisbon.

General Data:
Length overall approx. 68 m
Height approx. 13 m
Displacement approx. 1,840 t
Crew Complement 32


Submarine Murders.

In 2002 a suicide bomber killed 14 workers at French marine engineering company in Karachi, 11 of whom were French citizens. The killings are said to be linked to submarine sales by France to Pakistan in the early 1990s, and allegations of a complex kickback scheme involving some of France’s most prominent politicians. The families of the French bombing victims are seeking justice and a trial is underway. FRANCE 24 looks at the main players and entities in "Karachigate", the latest courtroom drama to sully France’s ruling class. French president Nicolas Sarkozy finds himself amidst a multi-million pound scandal with the Luxembourg police naming him as the owner of a company that handled the accounts of the sale of submarines to Pakistan in 1994. News website Mediapart quoted a Luxembourg police report as saying that Sarkozy oversaw the establishment in Luxembourg of two companies, Heine and Eurolux, when he was a minister under PM Edouard Balladur. Its purpose was to channel the secret payments, the inquiry report said. The report has strengthened suspicions that money from the submarine contract with Islamabad was funnelled to finance the 1995 presidential campaign, which was managed by Sarkozy, the then budget minister. Eventually, part of the funds that passed through Luxembourg came back to France to finance French political campaigns. In 1995, references lead us to believe in the existence of a form of retro-commission to pay for political campaigns in France, the report said. French opposition lawmakers on Thursday called on Sarkozy to give all details of any links to the suspected kickbacks. Pakistan president Asif Ali Zardari was also accused of receiving millions in kickbacks in the submarine deal.


Edouard Balladur – 1995 presidential campaign. This Turkish-born, right-wing politician was France’s prime minister when he was suspected of receiving kickbacks for Agosta submarines sold to Pakistan. The French daily Liberation reported that more than one million euros were added to the sales contract and wired into an account reserved for funding Balladur’s 1995 presidential campaign that pit him against former president Jacques Chirac. Balladur has denied the allegations, arguing that his campaign funds were given the all-clear by the French Constitutional Court.

SOFMA and the Lebanese connection. In order to sell submarines to Pakistan, and beat the competing German bids, some wheels needed to be greased. SOFMA, the company responsible for the export of French military hardware, was offered a 6.25 percent commission on any future sales. This commission was perfectly legal at the time. In addition, two Lebanese-born businessmen, Ziad Takieddine and Abdul Rahman el-Assir, were brought in to help seal the deal. They were positioned to collect a four percent commission to be shared with Pakistani intermediaries.

Nicolas Sarkozy - In 1995 future president Nicolas Sarkozy was director of Balladur’s presidential campaign. A Luxembourg police report dated January 2010 contains a damning suspicion: when Sarkozy was finance minister in 1994, he might have approved the creation of an offshore company called Heine to process the payments to the Lebanese men.

Jean-Marie Boivin – Heine. The same police report states that funds passing through the Heine offshore company were channelled back to France to finance election campaigns. In August 2010, the families of the Karachi bombing victims started civil proceedings against Jean-Marie Boivin, former administrator of the Luxembourg account, for perjury.


Jacques Chirac. - Balladur did not win the presidency in 1995, losing out to in-party rival Jacques Chirac. President Chirac subsequently ordered a halt to commissions for officials in the sale of submarines to Pakistan and an immediate inquiry was led by his defence minister Charles Millon. Families of the French engineers killed in the 2002 suicide bombing allege that the attack was revenge for Chirac’s cancelling of the payments.

Charles Millon - Charles Millon, who became defence minister in 1995, has confirmed in court that the kickbacks were real, and benefited French leaders working on the sidelines of the submarine sales. He also said that wire taps were ordered on the defence ministry officials working for his predecessor in 1995, but that the telephone recordings were of no consequence.

Alain Juppe and Dominique de Villepin - Two other prominent politicians are suspected of withholding information about the affair and will be called to testify: Chirac’s first prime minister (now defence minister) back in 1995, Alain Juppe, and Dominique de Villepin, then chief of staff of the Elysee presidential palace. It was Juppe who authorised the secret telephone recordings in 1995, plaintiffs say. De Villepin, meanwhile, has declared that France’s intelligence agency had strong suspicions that kickbacks to politicians had taken place.

Michel Mazens – SOFRESA. This former executive of the defence firm SOFRESA, which also promotes the sale of French armaments, has testified that both Chirac and de Villepin were notified that freezing payments could exact retribution by Pakistani agents.


Liberation. In April 2010 the left-leaning daily Liberation wrote that it had unearthed documents proving that cash deposits worth 10 million francs (around 1.5 million euros at the time) were deposited in April 1995 in Balladur’s campaign bank account. While the official source of that sum is said to be personal contributions collected at a party rally, half of the suspicious sum, Liberation reported, was in 500 franc notes. Liberation also reported that while Jacques Chirac ordered that all commission payments be halted immediately, disbursement continued well into 2001.

Mediapart. The French investigative news website Mediapart is at the source of the Luxembourg police report that points the finger at Nicolas Sarkozy in the creation of the Heine offshore company. The news organisation says that two of its journalists working on the Karachi file are under constant surveillance by the French security services.


Marc Trevidic. France’s judiciary is investigating the Karachigate affair from two separate angles.

Judge Marc Trevidic, originally charged with studying whether the 2002 bombing is related to Islamic terrorism, opened a new direction in the investigation in 2007, namely that the attack was linked to the freeze of commission payments.

Renaud Van Ruymbek. Appointed to handle the accusations of perjury against Jean-Marie Boivin, judge Renaud Van Ruymbeke was not supposed to look into possible corruption of political heavyweights. But in October 2010Ruymbeke announced that he would, after all, investigate the allegation of kickbacks - in particular, the theory that funds from the submarine sales were used to fund Balladur’s 1995 election campaign.



To maintain its aggressive economical growth, Beijing's desperate quest for reliable oil supplies, and secure unfettered supply route, are its main strategic aims for the next decade. To secure these supply lines, China is pursuing the "String of Pearls" strategy, by securing forward presence and military bases along the Sea Lines of Communication (SLOCs) from China to the Persian Gulf in the Middle East. A "pearl" normally comes with facilities like airstrips and protected naval bases. The first pearl is the Hainan Island in South China. The Chinese have already upgraded the naval base and military facilities at this location. This facility accommodates massive underground submarine and a base for large surface ships, strategically located at the South China Sea. The entrance to the submarine base are through large, 60 ft high tunnels, allowing conventional and nuclear submarines to enter or leave the base submerged, without Western spy satellites detecting their movements. The tunnels are leading to caverns that can hide up to 20 nuclear attack submarines. Two 950m piers built at the site can support two carrier battle groups. The second pearl is the port of Hambantota in Sri Lanka. Despite fierce objection from India, Sri Lanka and China continued the development of the base, with China underwriting US$1.2 billion for the facility.


The Chinese People's Liberation Army Navy (PLAN) operates two Type 094 'Jin Class' nuclear powered missile submarines (SSBN). The two vessels are normally on patrol or hidden underground in nearby tunnels (visible in the satellite photo above). This photo was taken during the celebration of the Chinese navy day. when the subs were exposed on ceremony. The third pearl is the Chittagong port in Bangladesh and another is located on the disputed Woody Island, located 300 miles east of Paracel archipelago. An airstrip has been upgraded at the site to support the naval facility. Similar infrastructure has been prepared at the Port of Sittwe in Myanmar, Marao in the Maldives and Port of Gwadar in Pakistan. Gwadar was chosen because of its strategic value, located only 240 km distance from the Straits of Hormuz. New Delhi fears that the Gwadar port project which is also linked to the Karakoram highway expansion project linking Western China with the Arabian sea could economically strengthen Pakistan.


Primitive submarine rescue facilities plague India

NEW DELHI: If an Indian submarine gets disabled deep underwater, the sailors on board are virtually sunk. India may be spending big bucks on importing fighters, warships and tanks but the Navy is still stuck with woefully-inadequate submarine rescue facilities. For one, there has been no progress on the well over a decade-old project to buy two DSRVs (deep submergence rescue vessels). More like `mini submarines', DSRVs can rescue 24 sailors at a time after `mating' with the hatch of the stricken submarine, equipped as they are with pressurised chambers, sonars, cameras and other hi-tech facilities. For another, as the latest CAG report states, the contract inked with the US Navy's "global submarine rescue fly-away kit service" is "yet to be fully operationalised" despite being finalised way back in 1997. "Lack of adequate need assessment, poor planning and absence of a conclusive time-bound agreement with the US Navy led to extensive delays in the timely commissioning of the essential and life saving submarine rescue facility," observed CAG.
When India had first inked the contract for the US rescue service in 1997, paying a total of $734,443, it was meant to be more of an interim measure till the Navy got its own DSRVs. While the DSRVs still remain a pipedream, even the implementation of the US submarine rescue programme has been plagued by delays. The CAG report holds its utility is "questionable" since 75% of the submarines in the Indian fleet (10 Russian Kilo-class, four German HDW and one Foxtrot) have already completed three-fourths of their estimated operational life. The reported stated that "Padeyes", which are holding devices welded into the escape hatches of submarines to secure the DSRV, had been fitted on to only 11 of the 15 Indian submarines till date. Of the 11, only four Kilo-class submarines have, so far, been certified by US Navy for mating with its DSRVs, and that, too, for a period of three years effective from December 20, 2007. The Foxtrot submarine, on which the Padeyes has been fitted, is slated to be phased out in 2011. Moreover, the US Navy's DSRVs are only supposed to be transported to India in case of an emergency. "The nominal response time is 72 hours from the time the DSRV is lifted from its location to reach the rescue site. It has the capability to rescue up to a depth of 610-metre," said CAG. "Such time and depth restrictions further dilute the effectiveness of a rescue facility, which in any case is nowhere close to completion," it added.


Canada Navy sub refit delayed again, won't be ready until 2011

There's been yet another delay in the completion date for the refit of Canadian navy submarine HMCS Victoria, one of four subs bought from Britain 12 years ago. The ship has been in dry dock at CFB Esquimalt, near Victoria, for more than three years and was supposed to return to service late last year, but that was extended to late 2010, and now to the middle of next year. The defence department blames the delays on a lack of parts and technical knowledge, but those problems have apparently been solved. The department says the lessons learned from the Victoria refit are being applied to the three other submarines, one of which, HMCS Chicoutimi, suffered a fire in 2004 that killed one sailor during the sub's maiden voyage in the North Atlantic. The Chicoutimi was moved to Victoria last year for an estimated $100 million in repairs but is not expected to be back in service until 2012. Canada bought the four submarines from Britain in 1998 in a controversial deal worth hundreds of millions of dollars.


Agosta submarine deal - Benazir, Zardari not involved: ex-naval spy chief.


The third of Pakistan’s new Agosta 90B submarines, PNS Hamza.


Former director-general of Naval Intelligence Commodore (retd ) Shahid Ashraf has said that President Asif Ali Zardari and former prime minister Benazir Bhutto were not involved in the deal for the purchase of Agosta submarines from France. He said that though he was “pressurised to get them involved” but he did not succumb. Participating in an Express News programme Kalamkar with Abbas Athar as host, he said that, in 1992, during the first Nawaz Sharif government, the Navy was given approval to acquire new submarines for $520 million. A team, comprising Admiral Naqvi, Admiral Javed Iftihkhar and Admiral SA Mujtaba, was constituted. The team visited China, France, Sweden and the UK and recommended that submarines should be purchased from Sweden. Later, Admiral Saeed Muhammad Khan again formed another team which visited France, Sweden, China and the UK and recommended to the ministry of defence to purchase either the UK-manufactured ‘Upholder’ class submarines or the French  ‘Agosta 90’ class submarines. He said that the detailed procedure was aimed at reaching a decision to assess the navy’s requirements. He said that the second team consisted of Rear Admiral AU Khan, SA Mujtaba, Captain Mushtaq, Captain Naqvi, Captain Naveed, Captain Alvi and Captain Khushnud. The former commodore told the audience that the agreement of purchase of Agosta class submarines was signed on August 21, 1994, during the second tenure of Benazir Bhutto. “The Pakistan Navy gave its consent to buy the submarines. The government could not have compelled the navy to agree to buy them.” Replying to a question, Commodore (retd ) Shahid Ashraf said that he was the DG Intelligence in those days. “I was informed that someone called Niaz was going to pay Captain Alvi a sum of $107,000 as part of ‘kickbacks’ on the deal. I went to the house of then Vice-Chief of Naval Staff Admiral AU Khan and provided him all necessary information about the people involved, but he refused to allow me to take any action and said that action should be taken with the permission of the Navy chief, Admiral Mansourul Haq, who was on a visit to France and the US. He said that he called up Admiral Mansour in France and informed him about the episode and “he advised me to wait until his return home”. “When he returned, I again told him the entire story. A meeting was held in which all senior officers were present. But this meeting remained inconclusive. After the meeting, Rear Admiral Faseeh Bukhari said to me that I should have ‘caught’ the persons. But I said that my job was to provide information and that he should have got the meeting to decide to arrest the suspects. He got angry and went away.” When he was asked to comment on Captain Alvi’s allegations regarding receipt of Rs1.5 million, Commodore (retd) Shahid Ashraf refused to comment. He said that, later, when he learnt that four commodores were “receiving $40,000 each”, the Navy chief, Mansourul Haque, and Vice-Admiral AU Khan advised me to investigate”. The accused deny ever taking any bribes.


N.Korea deploys torpedo-carrying midget subs

North Korea has developed a new type of midget submarine fitted with torpedo launch tubes, allowing it to attack South Korea warships more easily, a report said Tuesday. Satellite images of a naval base in the North's southwestern city of Nampo, published by JoongAng Ilbo newspaper, show what appears to be a 17-metre-long (56-feet) submarine with a tube-like structure attached to its top. "We have concluded that it is a torpedo launch tube," the paper quoted an unidentified Seoul intelligence source as saying. The paper said the new Daedong-B midget submarine moves faster than larger submarines and is harder for military radar to detect. The South accused the North of sending a 29-metre Yono-class submarine to torpedo the Cheonan warship in March which sank with the loss of 46 lives. The North denies the charge. The newspaper said the North has long used midget submarines to infiltrate spies into the South. It said Seoul military officials now suspect Pyongyang has developed a more powerful midget sub to carry torpedoes and other weapons. South Korea's defence ministry and intelligence agency declined to comment. Cross-border tensions have been high since the Cheonan incident, and rose further after the North's deadly artillery attack on a South Korean border island on November 23.


Algeria receives Kilo-class submarines

Algeria has reportedly received two Kilo-class (Project 636) diesel-electric submarines from Russia, ordered as part of an arms package signed in mid-2006. The new arrivals take the fleet to four, French media say. The Project 636 “Varshavyanka” class is mainly intended for anti-shipping and anti-submarine operations in relatively shallow waters. Russia has also offered its latest low-noise fourth generation Amur-1650 class submarines to India, which is on the verge of floating global tenders for an estimated $11 billion deal.


Amur-1650 class submarine.

India is vying to purchase six non-nuclear submarines to boost up its undersea warfare capability. The deal may be expanded by acquiring the know-how to build more such submarines at Indian shipyards, DNA reports. The Indian Navy has already sent requests for technical specifications to a number of countries including Russia, Germany, Spain and France who have already shown interest in the deal. Russia's biggest arms trader Rosoboronexport said it would bid for the tender. As part of project 751, Indian Navy proposes to have a undersea force of 24 submarines by 2015. India already has 10 Kilo-class submarines and has set up a line to manufacture French Scorpene Submarines at Mazagoan docks in Mumbai, the first of these submarines are expected to roll out by 2012. Rosoboronexport is offering the Amur class submarines, which are an upgraded version of Indian Navy's Kilo-class submarines. With the speed of 20 knots, the Amur is designed for both anti-submarine and anti-surface warfare. Its armaments include 16 tube launched torpedoes and also has a capability of launching cruise missiles . The Amur 1650 submarine has been developed by the Rubin Central Design Bureau of Naval Technology on the basis of the Kilo-class diesel-electric submarines, the most low-noise submarines in the world. The sonar signature level of the submarines of this class is several times lower in comparison with Kilo-class submarines. These submarines are equipped with radio-electronic weapons of the newer generation created on the basis of the latest achievements in the field of radio-electronics. The new submarine is equipped with 6 torpedo tubes and can take a crew of 35 people. Its depth of submergence is 300 metres, and its endurance is 45 days. Rosoboronexport officials were quoted by TASS as saying that the submarine could be fitted with AIP fuel cells to considerably improve its submergence endurance and range. "The company will surely take part in the tender, and it will bid with its Amur 1650 non-nuclear submarine," an official said.


North Korean torpedo sank the corvette Cheonan

South Korean Prime Minister Lee Myung-bak has claimed "overwhelming evidence" that a North Korean torpedo sank the corvette Cheonan on March 26, killing 46 sailors. U.S. Secretary of State Hillary Clinton claimed that there is "overwhelming evidence" in favour of the theory that North Korea sank the South Korean Navy warship Cheonan. But the articles of proof presented so far by military investigators to an official inquiry board have been scanty and inconsistent. There’s yet another possibility, that a U.S. rising mine sank the Cheonan in a friendly-fire accident. In the recent U.S.-China strategic talks in Shanghai and Beijing, the Chinese side dismissed the official scenario presented by the Americans and their South Korean allies as not credible. This conclusion was based on an independent technical assessment by the Chinese military, according to a Beijing-based military affairs consultant to the People Liberation Army. Hardly any of the relevant facts that counter the official verdict have made headline news in either South Korea or its senior ally, the United States. The first telltale sign of an official smokescreen involves the location of the Choenan sinking - Byeongnyeong Island (pronounced Pyongnang) in the Yellow Sea. On the westernmost fringe of South Korean territory, the island is dominated by a joint U.S.-Korean base for anti-submarine warfare (ASW) operations. The sea channel between Byeongnyeong and the North Korean coast is narrow enough for both sides to be in artillery range of each other. Anti-sub warfare is based on sonar and acoustic detection of underwater craft. Since civilian traffic is not routed through the channel, the noiseless conditions are near-perfect for picking up the slightest agitation, for example from a torpedo and any submarine that might fire it. Evidence that #1 found on 'torpedo' was written after the incident . North Korea admits it does not possess an underwater craft stealthy enough to slip past the advanced sonar and audio arrays around Byeongnyeong Island, explained North Korean intelligence analyst Kim Myong Chol in a news release. "The sinking took place not in North Korean waters but well inside tightly guarded South Korean waters, where a slow-moving North Korean submarine would have great difficulty operating covertly and safely, unless it was equipped with AIP (air-independent propulsion) technology." The Cheonan sinking occurred in the aftermath of the March 11-18 Foal Eagle Exercise, which included anti-submarine manoeuvres by a joint U.S.-South Korean squadron of five missile ships. A mystery surrounds the continued presence of the U.S. missile cruisers for more than eight days after the ASW exercise ended. Only one reporter, Joohee Cho of ABC News, picked up the key fact that the Foal Eagle flotilla curiously included the USNS Salvor, a diving-support ship with a crew of 12 Navy divers. The lack of any minesweepers during the exercise leaves only one possibility: the Salvor was laying bottom mines. Ever since an American cruiser was damaged by one of Saddam Hussein's rising mines, also known as bottom mines, in the Iraq War, the U.S. Navy has pushed a crash program to develop a new generation of mines. The U.S. Naval Mine and Anti-Submarine Warfare Command has also been focused on developing counterparts to the fearsome Chinese naval "assassin's mace," which is propelled by a rocket engine. A rising mine, which is effective only in shallow waters, rests atop a small platform on the sea floor under a camouflage of sand and gravel. Its detection system uses acoustics and magnetic readings to pick up enemy ships and submarines. When activated, jets of compressed air or solid-fuel rockets lift the bomb, which self-guides toward the magnetic center of the target. The blast rips the keel, splitting the ship or submarine into two neat pieces, just as was done to the RKOS Cheonan. A lateral-fired torpedo, in contrast, "holes" the target's hull, tilting the vessel in the classic war movie manner. The South Korean government displayed to the press the intact propeller shaft of a torpedo that supposedly struck the Cheonan. Since torpedoes travel between 40-50 knots per hour (which is faster than collision tests for cars), a drive shaft would crumble upon impacting the hull and its bearing and struts would be shattered or bent by the high-powered blast. The initial South Korean review stated that the explosive was gunpowder, which would conform to North Korea's crude munitions. This claim was later overturned by the inquiry board, which found the chemical residues to be similar to German advanced explosives. Due to sanctions against Pyongyang and its few allies, it is hardly credible that North Korea could obtain NATO-grade ordnance. Thus, the mystery centers on the USNS Salvor, which happened to be yet right near Byeongyang Island at the time of the Cheonan sinking and far from its home base, Pearl Harbor. The inquiry board in Seoul has not questioned the officers and divers of the Salvor, which oddly is not under the command of the 7th Fleet but controlled by the innocuous-sounding Military Sealift Command. Diving-support ships like the Salvor are closely connected with the Office of Naval Intelligence since their duties include secret operations such as retrieving weapons from sunken foreign ships, scouting harbour channels and laying mines, as when the Salvor trained Royal Thai Marine divers in mine-laying in the Gulf of Thailand in 2006, for example. The Salvor's presence points to an inadvertent release of a rising mine, perhaps because its activation system was not switched off. A human error or technical glitch is very much within the realm of possibility due to the swift current and strong tides that race through the Byeongnyeong Channel. The arduous task of mooring the launch platforms to the sea floor allows the divers precious little time for double-checking the electronic systems. If indeed it was an American rising mine that sank the Cheonan, it would constitute a friendly-fire accident.


HMS Astute.

Astute arriving at her home base on the Clyde in November 2009.


The UK's most powerful attack submarine, HMS Astute, has been welcomed into the Royal Navy today in a commissioning ceremony overseen by the boat's patron, the Duchess of Cornwall. HMS Astute, which officially becomes 'Her Majesty's Ship' today, is quieter than any of her predecessors, meaning she has the ability to operate covertly and remain undetected in almost all circumstances despite being fifty per cent bigger than any attack submarine in the Royal Navy's current fleet. The latest nuclear-powered technology means she will never need to be refuelled and can circumnavigate the world submerged, manufacturing the crew's oxygen from seawater as she goes. The submarine has the capacity to carry a mix of up to 38 Spearfish heavyweight torpedoes and Tomahawk land-attack cruise missiles, and can target enemy submarines, surface ships and land targets with pinpoint accuracy, while her world-beating sonar system has a range of 3,000 nautical miles (5,500km). The First Sea Lord, Admiral Sir Mark Stanhope, said: "The Astute Class is truly next generation - a highly versatile platform, she is capable of contributing across a broad spectrum of maritime operations around the globe, and will play an important role in delivering the fighting power of the Royal Navy for decades to come." A highly complex feat of naval engineering, she is at the very cutting-edge of technology, with a suite of sensors and weapons required to pack a powerful punch. "Today is an important milestone along the road to full operational capability which will follow after a further series of demanding seagoing trials testing the full range of the submarine's capabilities." Following the successful completion of her first rigorous set of sea trials, which began at the end of 2009, HMS Astute has also now achieved her in-service date, signalling that she has proven her ability to dive, surface and operate across the full range of depth and speed independently of other assets, thereby providing an initial level of capability. Rear Admiral Simon Lister, Director of Submarines, who oversees the build programme of the class for the MOD, said: "To my mind Astute is a 7,000-tonne Swiss watch. There is an extraordinary amount of expertise that goes into putting one of these submarines together. There are stages when it's like blacksmithing and there are stages when it's like brain surgery. "So to see Astute commissioned is momentous not only for the Royal Navy, who have been eagerly anticipating this quantum leap forward in capability, but for the thousands of people around the country who have been involved in the most challenging of engineering projects." Following the commissioning, HMS Astute will return to sea for further trials before she is declared as operational. As the base port of all the Royal Navy's submarines from 2016, Faslane will be home to the whole Astute Class, including Ambush, Artful and Audacious which are already under construction. Astute was built by BAE Systems at Barrow-in-Furness, with hundreds of suppliers around the country contributing component parts, including Rolls-Royce, Derby (nuclear plant); Thales UK, Bristol (visual system and Sonar 2076); and Babcock, Strachan & Henshaw, Bristol (weapon handling and discharge system). Astute is affiliated to the Wirral in the North West.

HMS Astute Facts

• She is 97 metres from bow to stern.
• She has a beam of 11.2 metres.
• She displaces 7,400 tonnes of seawater.
• Her cabling and pipework would stretch from Glasgow to Dundee.
• She is the first Royal Navy submarine not to have a traditional periscope, instead using electro-optics to capture a 360-degree image of the surface for subsequent analysis by the commanding officer.
• Astute is the first submarine to have an individual bunk for each crew member.
• She manufactures her own oxygen from seawater as well as her own drinking water.
• She could theoretically remain submerged for her 25-year life, if it were not for the need to restock the crew's food supplies.
• She is faster under the water than she is on the surface - capable of speeds in excess of 20 knots (37km/h), although her top speed is classified.
• Astute's crew of 98 are fed by five chefs who, on an average patrol, will serve up 18,000 sausages and 4,200 weetabix for breakfast. 


Is The Astute Cursed?

November 7, 2010: Britain's new SSN (nuclear attack submarine), the HMS Astute, is shaping up as a hard luck boat. Construction was full of problems. The boat was three years late and 50 percent over budget. Then, last month, during sea trials off Scotland, it got stuck on a sand bar off the Isle of Skye. It was towed off on October 22nd, after being stranded for ten hours. Then, things got worse, as the Astute collided with one of the tugs assisting it. The damage from both incidents was believed to be repairable locally, so that the boat can resume its trials. Maybe. Britain is pitching its new Astute class SSNs as the quietist and most lethal in the world. The 7,200 ton boats are 104 meters (323 feet) long and carry a crew of 98. The Astutes are more spacious than previous British SSNs, and every sailor will have his own bunk, and more space in general. Sensors are of generally the same quality as those found in American boats, but the British, as in the past, have put more emphasis on silencing. Just how effective these efforts have been won't be known until the Astute has been at sea for a while. The Astutes cost $2.5 billion each. Only three have been ordered so far, and the navy is hoping to get four more. The Astute is desperately needed, as most existing British SSNs will be retired in the next ten years. The Royal Navy is making a big public relations splash over the launching of the Astute, and its capabilities. This isn't about pride, but about getting public opinion, and members of parliament, behind paying for more Astute class boats. The recent grounding and collision generated a lot of publicity, but not the kind the Royal Navy was looking for.


Collins-class submarine damaged in collision with a tug while leaving port in Western Australia.  

HMAS Dechaineux will be docked for between eight and 10 days for repairs after an incident involving the civilian tug as it was leaving its berth at Fleet Base West at HMAS Stirling. The submarine was carrying out a routine manoeuvre with the tug when it crossed over the submarine's stern, the navy said in a statement last night. "No one was injured but a subsequent inspection has confirmed repairs are needed," it said. The submarine will not be able to take part in the exercise off Western Australia and will be replaced by HMAS Collins, which is currently at sea.



Arms giant BAE Systems will discover in court tomorrow the extent of a settlement with the Serious Fraud Office over 'accounting errors' in Tanzania. The SFO earlier this year struck a deal with the defence firm, which builds Astute class submarines (pictured) for the MoD at Barrow-in-Furness in Cumbria, that would see the company pay a £30m fine.  But Justice Bean, the judge presiding over the sentencing at Southwark Crown Court, could decide to make BAE pay more than agreed, amid doubts over the SFO's legal ability to arrange a US-style plea bargain. 


Plea bargain: The SFO earlier this year struck a deal with the defence firm, which builds Astute class submarines (pictured) for the MoD at Barrow-in-Furness in Cumbria, that would see the company pay a £30m fine


Plea bargain: The SFO earlier this year struck a deal with the defence firm, which builds Astute class submarines (pictured) for the MoD at Barrow-in-Furness in Cumbria, that would see the company pay a £30m fine.


Brazil Plans six Nuclear Submarines By 2047

Brazil’s navy plans to have six nuclear-powered submarines and 20 new conventional submarines by 2047, the Estado de Sao Paulo newspaper reported, without saying where it got the information. The first nuclear submarine is under construction and will cost 4.7 billion reis ($2.7 billion), including the expense for acquiring technology from the Paris-based DCNS shipyard, Estado said. The other five nuclear submarines will be built at the Itaguai shipyard that is under construction in Rio de Janeiro state, Estado said.


China seeks to mine deep sea riches

This summer China 's Jiaolong manned submersible, under development in secret since 2003, reached a depth of 3,759 metres on a dive in the South China Sea, technically speaking not far from the 5,000 metres or so that France's Nautile has reached. In theory, the Jiaolong can dive to 7,000 metres, whereas the limit for the Shinkai , its Japanese rival, is 6,500 metres. "It is the most recent submersible, with the benefit of the latest technologies," says Pierre Cochonat, deputy-head of programmes at France's Marine Exploitation Research Institute (Ifremer ) and a specialist on the ocean depths. At Qingdao, in Shandong province east of Beijing, a research centre is being built for marine systems operating at great depths. It will be the Jiaolong's home and also accommodate China's unmanned submarines. The country has made a huge commitment to research and development in order to join the select circle of nations equipped to explore the ocean depths. The Jiaolong is one of the key projects in Plan 863, one of the top Chinese programmes. About 100 research centres contributed to the project. The submarine was designed by Chinese experts, says Liu Feng, the deputy-head of the China Ocean Mineral Resources Research and Development Association (Comra), which heads the project. The titanium sphere occupied by the crew was imported from Russia. The hydraulic arm and syntactic foam, which withstands high pressures, were manufactured in the US, a pioneer in this field. The hydrophone the acoustic sound-and-data transmission system and guidance systems were developed in the People's Republic. "We are proud to have achieved the greatest manoeuvrability in the world," Liu says. Humans have long dreamt of diving deep into the oceans, but economic pressures are an additional incentive, with new world powers such as China and India showing a limitless hunger for raw materials. Mineral resources take various forms: polymetallic nodules, manganese crusts and massive sulphides, a source of lead, zinc and copper mainly produced by magma spilling out of cracks in the Earth's crust. In a surprise move this May, China became the first country to apply for a contract area in international waters to prospect for massive sulphide ore. An agreement between Comra and the International Seabed Authority has yet to be approved. Its aim is "exploration not exploitation", Liu said. China has no sulphide deposits in its waters and most of the likely sites are in international waters, along mid-ocean ridges. A Canadian firm, Nautilus, is already prospecting in the waters off Papua New Guinea and plans to start full-scale operations in 2012, a venture that should prove decisive for the future of the industry, according to Cochonat. As for France, this summer Ifremer started looking for hydrothermal vents off Wallis and Futuna, in one of its exclusive economic zones


Chinese sub pops up in middle of U.S. Navy exercise undetected.

When the U.S. Navy deploys a battle fleet on exercises, it takes the security of its aircraft carriers very seriously indeed. At least a dozen warships provide a physical guard while the technical wizardry of the world's only military superpower offers an invisible shield to detect and deter any intruders. That is the theory. Or, rather, was the theory. American military chiefs have been left dumbstruck by an undetected Chinese submarine popping up at the heart of a recent Pacific exercise and close to the vast U.S.S. Kitty Hawk - a 1,000ft supercarrier with 4,500 personnel on board. By the time it surfaced the 160ft Song Class diesel-electric attack submarine is understood to have sailed within viable range for launching torpedoes or missiles at the carrier. According to senior Nato officials the incident caused consternation in the U.S. Navy. The Americans had no idea China's fast-growing submarine fleet had reached such a level of sophistication, or that it posed such a threat. One Nato figure said the effect was "as big a shock as the Russians launching Sputnik" - a reference to the Soviet Union's first orbiting satellite in 1957 which marked the start of the space age. The incident, which took place in the ocean between southern Japan and Taiwan, is a major embarrassment for the Pentagon. The lone Chinese vessel slipped past at least a dozen other American warships which were supposed to protect the carrier from hostile aircraft or submarines. And the rest of the costly defensive screen, which usually includes at least two U.S. submarines, was also apparently unable to detect it. According to the Nato source, the encounter has forced a serious re-think of American and Nato naval strategy as commanders reconsider the level of threat from potentially hostile Chinese submarines. It also led to tense diplomatic exchanges, with shaken American diplomats demanding to know why the submarine was "shadowing" the U.S. fleet while Beijing pleaded ignorance and dismissed the affair as coincidence. Analysts believe Beijing was sending a message to America and the West demonstrating its rapidly-growing military capability to threaten foreign powers which try to interfere in its "backyard". The People's Liberation Army Navy's submarine fleet includes at least two nuclear-missile launching vessels. Its 13 Song Class submarines are extremely quiet and difficult to detect when running on electric motors. Commodore Stephen Saunders, editor of Jane's Fighting Ships, and a former Royal Navy anti-submarine specialist, said the U.S. had paid relatively little attention to this form of warfare since the end of the Cold War. He said: "It was certainly a wake-up call for the Americans. "It would tie in with what we see the Chinese trying to do, which appears to be to deter the Americans from interfering or operating in their backyard, particularly in relation to Taiwan." In January China carried a successful missile test, shooting down a satellite in orbit for the first time


China tweaks Russian Submarine Designs

China recently launched a new diesel-electric submarine. There was no official information released, but based on photos available it appears to be another development in China's taking Russian submarine technology and adapting it for Chinese designs. China has been doing this for as long as it has been building subs (since the 1960s). But this latest version of what appears to be the Type 41 design, shows Chinese naval engineers getting more creative. The Type 41A, or Yuan class , looks just like the Russian Kilo class. In the late 1990s, the Chinese began ordering Russian Kilo class subs, then one of the latest diesel-electric design available. Russia was selling new Kilos for about $200 million each, which is about half the price other Western nations sell similar boats for. The Kilos weigh 2,300 tons (surface displacement), have six torpedo tubes and a crew of 57. They are quiet, and can travel about 700 kilometers under water at a quiet speed of about five kilometers an hour. Kilos carry 18 torpedoes or SS-N-27 anti-ship missiles (with a range of 300 kilometers and launched underwater from the torpedo tubes.) The combination of quietness and cruise missiles makes Kilo very dangerous to American carriers. North Korea and Iran have also bought Kilos. The Chinese have already built three Yuans, the second one an improvement on the first. These two boats have been at sea to try out the technology that was pilfered from the Russians. The third Yuan is the one just launched, and appears to be a bit different from the first two. The first Yuan appeared to be a copy of the early model Kilo (the model 877), while the second Yuan (referred to as a Type 41B) appeared to copy the late Kilos (model 636). The third Yuan may end up being a further evolution, or Type 41C. This one also appears similar to the Russian successor to the Kilo, the Lada. The first Lada underwent three years of sea trials before they were declared fit for service last year. Another is under construction and eight are planned. The Kilo class boats entered service in the early 1980s. Russia only bought 24 of them, but exported over 30. It was considered a successful design. But just before the Cold War ended in 1991, the Soviet Navy began work on the Lada. This project was stalled during most of the 1990s by a lack of money. The Ladas are designed to be fast attack and scouting boats. They are intended for anti-surface and anti-submarine operations as well as naval reconnaissance. These boats are said to be eight times quieter than the Kilos. This was accomplished by using anechoic (sound absorbing) tile coatings on the exterior, and a very quiet (skewed) propeller. All interior machinery was designed with silence in mind. The sensors include active and passive sonars, including towed passive sonar. The Ladas have six 533mm torpedo tubes, with 18 torpedoes and/or missiles carried. The Lada has a surface displacement of 1,750 tons, are 220 feet long and carry a crew of 38. Each crewmember has their own cabin (very small for the junior crew, but still, a big morale boost). When submerged, the submarine can cruise at a top speed of about 39 kilometers an hour (half that on the surface) and can dive to about 800 feet. The Lada can stay at sea for as long as 50 days, and the sub can travel as much as 10,000 kilometers using its diesel engine (underwater, via the snorkel). Submerged, using battery power, the Lada can travel about 450 kilometers. There is also an electronic periscope (which goes to the surface via a cable), that includes a night vision capability and a laser range finder. The Lada was designed to accept a AIP (air independent propulsion) system. Russia was long a pioneer in AIP design, but in the last decade, Western European nations have taken the lead. Construction on the first Lada began in 1997, but money shortages delayed work for years. The first Lada boat was finally completed in 2005. A less complex version, called the Amur, is being offered for export. The new Chinese Yuan class boat is larger than the Kilos or Ladas, but has similar external design features. It will be a while before more details can be uncovered. Preceding the Yuans was the Type 39, or Song class. This was the first Chinese sub to have the teardrop shaped hull, and was based on the predecessor of the Kilo, the Romeo class. The Type 41A was thought to be just an improved Song, but on closer examination, especially by the Russians, it looked like a clone of the Kilos. The Yuan class also have AIP (Air Independent Propulsion), which allows non-nuclear boats to stay underwater for days at a time. China currently has 13 Song class, 12 Kilo class, three Yuan class and 25 Romeo class boats. There are only three Han class SSNs, as the Chinese are still having a lot of problems with nuclear power in subs. Despite that, the Hans are going to sea, even though they are noisy and easily detected by Western sensors."


Russian Akula Class: The sea shark

Russian nuclear-powered attack submarine K-152 Nerpa. Project 971 (NATO code name Akula) is the most advanced Russian nuclear-powered attack submarine. The submarines were built by the Amur Shipbuilding Plant Joint Stock Company at Komsomolsk-on-Amur and at the Severodvinsk shipbuilding yard. Seven Akula I submarines were commissioned between 1986 and 1992, and three Improved Akula between 1992 and 1995. Construction of the Akula II class Nerpa nuclear attack submarine started in 1991 but was suspended for over a decade due to lack of funding. Akula II class vessels are considered the quietest and deadliest of Russian nuclear-powered attack submarines. They feature a double-hulled configuration with a distinctive high aft fin. Indian Navy will soon get the K-152 the Akula II class Nerpa nuclear attack submarine for a 10-year lease. The Akula II in service with the Russians is equipped with 28 nuclear-capable cruise missiles with a striking range of 3,000 km. The Indian version is expected to be armed with the 300-km Club nuclear-capable missiles. The most-modern Russian submarine will be recommissioned as 'INS Chakra’ in India. The submarine had faced a mishap during sea trials in November 2008 which killed 20 sailors and technical staffs. The submarine has a double-hulled configuration with a distinctive high aft fin. The hull has seven compartments and the stand-off distance between the outer and inner hulls is considerable, reducing the possible inner hull damage. The very low acoustic signature has been achieved by incremental design improvements to minimise noise generation and transmission – for example, the installation of active noise cancellation techniques. The retractable masts viewed from bow to stern are the periscopes, radar antennae, radio and satellite communications and navigation masts.  


Dimensions:       Surfaced Displacement - 8,140t. Displacement, Submerged - 12,770t. Overall Height - 11.3m. Hull Cross Section - 13.6m x 9.68m.        Performance Diving Depth - 600m  Run Speed Surfaced - 10kt. Run Speed Submerged - 33kt. Speed with Reverse Propeller System - 3kt to 4kt. Endurance - 100 days. Weapon Systems Missile Torpedo Weapons. 4 x 650mm tubes.  4 x 533mm tubes. Cruise Missiles (SLCM). 12 Granit land-attack missiles. Anti-Ship Missiles and Torpedoes. 28 Stallion and Starfish missiles, mk40 torpedoes, anti-submarine missiles and torpedoes in a range of variants. Air-Defence Missiles. Strela portable missile – 18 missiles. Systems Electronic Equipment. Automated radio communication system. Combat control information system. General-purpose radar.       Active and passive sonar. Periscopes. Commander's periscope. Air defence periscope.       Propulsion Main Machinery. Nuclear, with steam turbine power. Pressure Water Reactor. 1 x 190MW. Steam Turbine. 1 x 50,000hp.   Auxiliary Diesels. 2 x 750hp.       Propulsion Motors 2 x 276kW. Reserve Propeller Systems with Motors 2 x 370kW.       Single Propeller 7-bladed fixed-pitch propeller.


Made in the UK's Largest Submarine

Britain will launch its newest submarine, Thursday (16/12/10) at Barrow-in-Furness in Cumbria. Submarine-cost 1.2 billion pounds, or around Rp 22.5 trillion, it is claimed as the largest submarines ever built Britain. Submarine named Ambush has size 50 percent larger than its predecessor, Swiftsure and Trafalgar. Approximately 291 feet in length, equivalent to the length of a football field. Remarkably, the submarine was able to turn sea water into oxygen and fresh water so as to maintain its 98 crew still alive. In addition, these submarines also nearly silent so not easy to detect the enemy. Sonar and radar Ambush submarines can detect other ships, a distance of 3000 nautical miles (5556 kilometers). So, if you are in the area of sea that separates England and France, these submarines can detect ships in New York, USA. These submarines do not need refueling and can attack using missiles as far as 1,000 miles (1609 kilometers). The greatest, the submarines mission is usually only 10 weeks, but in theory these submarines can stay underwater without needing to surface in her life, 25 years old. Ambush will be carrying 38 missiles, the Tomahawk cruise missiles which have a cruising range up to 1240 miles (1996 kilometers). In addition, these submarines will be equipped with a heavyweight torpedo to destroy ships and other submarines. Nuclear-powered engines that can propel the ship at speeds of up to 20 knots, allowing ships to travel 500 miles (805 kilometers) a day. So big, said nuclear energy could feed the entire town of Southampton. Ambush will be officially launched and named by Lady Anne Soar, wife of Chief Commander of the Navy Sir Trevor Soar. Furthermore, the submarine-sized 7400 metric tons of this will be tested. Just to note, this submarine can carry 98 crew. In addition, the Ambush is also equipped warehouse that can store food for the needs for three months, consisting of 18,000 sausages and 4,200 packs of cereal Weetabix.


Soon .. Baldoasat submarine in the depths of the sea

MOSCOW: Russia has developed a small submarine for private use, is the first of its kind which is. being operated Caldrajp using the pedals, and two persons can generate the energy needed to run till the water without the need for special training to use them, not to exceed the speed of speed of walking. The company said that, contrary to conventional submarines, a water vehicle design simple, the most part, made of acrylic glass sector, as well as Dostin and the steering wheel, the operation and control with few buttons, also provided the automatic safety system for floating on the surface of water in case of emergency. The company designed, called "Marine Iinouphoutv Technology", that the submarine will allow its user to enjoy with a great under water, especially since the vehicle capable of diving to a depth of 30 meters, and has a great ability to manoeuvre and turn around the vertical axis. The length of the submarine 11 feet and display more than six feet, and is expected to be priced about 70 thousand dollars, according to a newspaper "Telegraph" British. The manufacturer of the submarine is the first of its kind to be powered by using the pedals, and taking advantage of a phenomenon called the Coanda effect, which enables two people to generate sufficient momentum, in addition to the ability of the submarine to reach to a distance of 37 thousand feet below the surface of the water, and speeds up to 400 feet per minute. The design of the submarine, a famous designer Graham Hawkes, who is now the largest manufacturing business model of this type of submarines.


The sinking of the Cheonan (Accident, false flag or enemy attack?)

On March 26 this year, the Cheonan, a South Korean Corvette, sank in waters off Baengnyeong Island. Initial reports from Naval and Intelligence chiefs ruled out foul play: Won Se-hoon, director of the National Intelligence Service, was quoted as saying during a parliamentary committee session that to his knowledge, there was no direct link between North Korea and the sunken ship. U.S. Deputy Secretary of State James Steinberg said that he had heard nothing to implicate any other country in the incident. ``Obviously, the full investigation needs to go forward. But to my knowledge, there is no reason to believe or to be concerned that that may have been the cause,'' he said. Lee Ki-sik, head of the marine operations office at the Joint Chiefs of Staff, ruled out the possibility, saying, North Korean warships have been detected, and there is no possibility of their approaching the waters where the accident took place. We closely watched the vement of the North vessels, including submarines and semi-submersibles, at the time of the sinking said Commodore Lee Gi-sik, chief of information operations under the Joint Chiefs of Staff in Seoul, during a media briefing. But [the South military did not detect any North Korean submarines near the countries western sea border. "If a single torpedo or a floating mine caused a naval patrol vessel to split in half and sink, we will have to rewrite our military doctrine," said Baek Seung-joo of the Korea Institute for Defense Analyses. Instead, he believes an accident within the vessel is to blame....... Former Navy Chief of Staff Adm. Song Young-moo, said, "Some people are pointing the finger at North Korea, but anyone with knowledge about the waters where the shipwreck occurred would not draw that conclusion so easily." Experts say those waters are only 25 m deep and characterized by rapid currents, making it very difficult for North Korean submarines or semi-submersible vessels to operate. Members of the right wing* Government of Lee Myung Bak took a different tack: A torpedo is among the "most likely" causes for a South Korean naval ship that sank close to the disputed border with North Korea last month, killing at least 40 sailors, South Korea's defence minister said. At this point, Lee's government put a clamp on speculation, gagging official spokesmen. On May 20 the South Korean government announced that it has overwhelming evidence that one of its warships was sunk by a torpedo fired by a North Korean submarine. The World's press trumpeted that the "International Inquiry" had unanimously agreed that a North Korean torpedo was the culprit.


Strategic Submarines

The future of Russia’s sea-based strategic deterrent force revolves around the Borei-class submarines, eight of which are planned to be built by 2017. The first was completed in 2008 and is currently undergoing sea trials. Another three are already under construction. While the submarines themselves seem to be in good shape, the project is currently mired in uncertainty because of continuing failures in testing of the Bulava SLBM with which they are to be equipped. The Bulava is the first solid-fuel SLBM to be used in Russian/Soviet submarines. The Bulava test missiles are being launched from the Dmitry Donskoy, the last of the Typhoon SSBNs, built in the late 1970s and modified a few years ago to launch the Bulava. Two other Typhoons are currently listed as inactive and may be modified in the future to carry conventional cruise missiles instead of SLBMs. The Russian Navy currently operates six Delta IV SSBNs, all based in the Northern Fleet. Four of the subs have already been upgraded to carry Sineva SLBMs. Two others are currently being overhauled, with expected relaunch dates in 2011 and 2012, respectively. The expectation is that these subs, which were all built in the late 1980s, will continue to serve through 2020-25. The Pacific Fleet currently has four active Delta III SSBNs, all built between 1979 and 1982. These subs carry the SS-N-18 SLBM. They are expected to be withdrawn from service in the near future, as the new Borei-class SSBNs enter the fleet. Original plans called for them to have been withdrawn already by 2010, but problems with the Bulava have so far prevented the Borei submarines from replacing the Delta IIIs. Assuming that the Bulava’s problems are resolved, 10-15 years from now, we are likely to see Russia maintaining a fleet of 12 SSBNs, most likely including 6-8 Boreis and 4-6 Delta IVs.


Multi-purpose Nuclear Submarines

The Russian Navy currently operates several kinds of multi-purpose submarines. The largest are the Oscar II class cruise missile submarines, built mostly in the 1980s and armed with P-700 Granit cruise missiles. Eight of these submarines are available to the navy, though at least three are currently in reserve or being repaired. As currently configured, their sole real purpose is to hunt down US carrier groups, though this is made difficult in practice by their large size and noisiness, characteristics that make them relatively easy to spot. In the future, they could be equipped with newer cruise missiles to expand their range of missions. Two more Oscar IIs were never completed but could be finished in the future, though it seems to me that this would not be a wise expenditure of limited procurement resources.  The Akula is the main type of attack submarine currently in the Russian Navy. There are eight in active service, mostly in the Northern Fleet, though several more are being held in reserve. The older boats in this class are likely to be retired over the next decade. In addition, the Navy still operates four Victor III attack submarines and three Sierra I and II attack submarines. All of these are likely to be retired in the near future as well. The only replacement for these submarines, at the moment, is the Severdvinsk class, a modification of the Akula class that is considered by some experts to be the most sophisticated nuclear submarine in the world, able to travel at 33 knots, armed with 8 torpedo tubes and able to launch up to 24 cruise missiles simultaneously. They are similar in some ways to the American Sea Wolf submarine. At the same time, these submarines are very expensive and some analysts doubt the need for building too many of them given that the Sea Wolf program was cancelled after only three were built. For the moment, one submarine of this class has been launched and another is under construction. Navy officials have stated that they hope to start building one of these a year starting in 2011, but this seems highly unlikely given the financial constraints and technological limitations of Russian submarine building. It seems that this is the most problematic category for the Russian Navy’s submarine fleet. Ten years from now, the navy is likely to have at its disposal around 4 Oscar IIs, 4-5 Akulas, and no more than 3 Severdvinsk submarines. And the remaining Oscars and Akulas will have to be retired by 2025-2030. Given these numbers, what the navy desperately needs is a relatively basic, cheap, and easy to build attack submarine along the lines of the American Virginia class. While there are rumors that various bureaus are working on designs for such a submarine, there has been no official word on this process.


Diesel Submarines

The Russian Navy currently operates 12-15 Kilo class diesel-electric submarines, most of which were built in the 1980s. Several additional submarines are in reserve and a couple are under repair and will likely return to operational status. These are extremely quiet submarines, intended for anti-shipping and anti-submarine operations in shallow waters. They are armed with torpedoes and surface-to-air missiles. The successor to the Kilo is the Lada, the first of which (the St. Petersburg) was launched in 2005 but not commissioned until May 2010. Despite being listed in active service, the St. Petersburg continues to experience problems with its propulsion systems, which had been the cause of the delays in completing the sub’s sea trials. In the meantime, two other submarines of this class are under construction, though their completion is likely to be delayed until the problems with the St. Petersburg are resolved. The Russian navy hopes to build a total of eight Ladas by 2020, and more thereafter. Because of the urgent need for new diesel submarines in the Black Sea Fleet and the continuing problems with the Lada, in August 2010 the navy announced that it will build three improved Kilos (of a type previously built only for export) for the Black Sea Fleet. Construction of the first submarine has already begun and all three are expected to be completed by 2014. These are realistic timelines, given the speed with which these submarines have been built for the Chinese and Algerian navies.


Submarine hull

Modern submarines are usually cigar-shaped. This design, already visible on very early submarines (see below) is called a "teardrop hull", and was patterned after the bodies of whales. It significantly reduces the hydrodynamic drag on the sub when submerged, but decreases the sea-keeping capabilities and increases the drag while surfaced.


Since the limitations of the propulsion systems of early military submarines forced them to operate most their time on the surface, their hull designs were a compromise. Because of the slow submerged speeds of those subs, usually well below 10 kt, the increased drag for underwater travel was considered acceptable. Only late in World War II, when technology enhancements allowed faster and longer submerged operations and increased surveillance by enemy aircraft forced submarines to stay most of their times below the surface, did hull designs become teardrop shaped again, to reduce drag and noise. On modern military submarines the outer hull is covered with a thick layer of special sound-absorbing rubber, or anechoic plating, to make the submarine more difficult to detect by SONAR.


All small modern submarines and submersibles, as well as the oldest ones, have a single hull. However, for large submarines, the approaches have separated. All Soviet heavy submarines are built with a double hull structure, but American submarines usually are single-hulled. They still have light hull sections in bow and stern, which house main ballast tanks and provide hydrodynamically optimized shape, but the main, usually cylindrical, hull section has only a single plating layer.

Light hull

The double hull of a submarine is different from a ship's double hull. The external hull, which actually forms the shape of submarine, is called the outer hull or light hull. This term is especially appropriate for Russian submarine construction, where the light hull is usually made of steel that is only 2 to 4 millimeters thick, as it has the same pressure on both sides. The light hull can be used to mount equipment, which if attached directly to the pressure hull could cause unnecessary stress. The double hull approach also saves space inside the pressure hull, as the ring stiffeners and longitudinals can be located between the hulls. These measures help minimise the size of the pressure hull, which is much heavier than the light hull. Also, in case the submarine is damaged, the light hull takes some of the damage and does not compromise the boat's integrity, as long

Pressure hull

Inside the outer hull there is a strong hull, or pressure hull, which actually withstands the outside pressure and has normal atmospheric pressure inside. The pressure hull is generally constructed of thick high-strength steel with a complex structure and high strength reserve, and is separated with watertight bulkheads into several compartments. The pressure and light hulls aren't separated, and form a three-dimensional structure with increased strength. The interhull space is used for some of the equipment which doesn't require constant pressure to operate. The list significantly differs between submarines, and generally includes different water/air tanks. In case of a single-hull submarine, the light hull and the pressure hull are the same except for the bow and stern. The task of building a pressure hull is very difficult. No matter how large the submarine is, its hull must be constructed with very high precision. Inevitable minor deviations are resisted by the stiffener rings, but even a one inch (25 mm) deviation from roundness results in over 30 percent decrease of hydrostatic load.[1] The total pressure force of several million tons must be distributed evenly over the hull and be oriented longitudinally, as no material could resist such force by bending. A submarine hull has to use expensive transversal construction, with the stiffeners rings located more frequently than the longitudinals. All hull parts must be welded without defects, and all joints are checked several times with different methods. This contributes to very high cost of modern submarines (for instance, a Virginia class attack submarine costs 2.6 billion dollars, over $200,000 per ton of displacement).

Dive depth

The dive depth cannot be increased easily. Simply making the hull thicker increases the weight and requires reduction of the weight of onboard equipment, ultimately resulting in a bathyscaphe. This is affordable for civilian research submersibles, but not military submarines, so their dive depth was always bound by current technology. The World War One submarines had their hulls built of carbon steel, and could not submerge below 100 meters. During World War Two, high-strength alloyed steel was introduced, allowing for depths up to 200 meters. High-strength alloyed steel is still the main material for submarines today, with 250-350 meters depth limit, which cannot be exceeded on a military submarine without sacrificing other characteristics. To exceed that limit, a few submarines were built with titanium hulls. Titanium is stronger and lighter than steel, and is non-magnetic. Titanium submarines were especially favored by the Soviets, as they had developed specialized high-strength alloys, built an industry for producing titanium with affordable costs, and have several types of titanium submarines. Titanium alloys allow a major increase in depth, but other systems need to be redesigned as well, so test depth was limited to 1000 meters for K-278 Komsomolets, the deepest-diving military submarine. An Alfa class submarine may have successfully operated at 1300 meters,[2] though continuous operation at such depths would be an excessive stress for many submarine systems. Despite its benefits, high costs of titanium construction led to abandonment of titanium submarines idea as the Cold War ended.

Other types

There are examples of more than two hulls inside a submarine. The light hull of Typhoon class submarines houses two main pressure hulls, a smaller third pressure hull constituting most of the sail, two other for torpedoes and steering gear, and between the main hulls 20 MIRV SLBMs along with ballast tanks and some other systems. The Royal Netherlands Navy Dolfijn and Potvis class submarines housed three main pressure hulls.


Sea lions, dolphins serve as elite defence force

Boats with intimidating displays of weapons patrol the waters at the port at Kings Bay Naval Submarine Base. But if underwater intruders elude a patrol boat's sophisticated electronic surveillance, something else waits in the depths that Navy officials say cannot be fooled. For five years, 10 California sea lions and four Atlantic bottlenose dolphins have provided underwater security for Ohio-class submarines ported at Kings Bay as part of the Swimmer Interdiction Security System. Dolphins are trained to use their sophisticated sonar to detect unusual underwater activity and report it to their handlers. A dolphin is sent back to the area with a lighted beacon that it releases near the intruder to alert Navy security forces. "Their primary mission is finding an intruder and marking the target," project manager Steve Hugueley said. "These guys are really good about using sonar to find targets. They work at it every day." Sea lions are trained to carry a special cuff in their mouths that they can quickly clamp around an intruder's leg. "It's like a handcuff; it can only get tighter," Hugueley said. The intruder is reeled in by base security by a rope attached to the cuff, which can only be removed with a special key. "I think for bases who have these high-value assets, it's really a first line of defence for protection against underwater intruders," he said. Kings Bay is home to eight $2 billion Ohio-class submarines. Six of the boats carry ballistic nuclear missiles, while two were recently converted to carry cruise missiles. While the work is serious, the trainers and marine mammals in the program interact much like their counterparts at a tourist attraction such as SeaWorld. The animals are rewarded with a fish when they perform a task properly. One of the dolphins spun in the water with excitement when a trainer offered him a fish. During free time, connecting doors to pens are often opened so the animals can socialize with each other, Hugueley said. While trainers said teaching the animals is fun, the mission is serious. The marine mammal program, in existence since 1960, provided port security during the Vietnam War, protected the Third Fleet flagship overseeing Navy vessels that escorted Kuwaiti oil tankers in 1987 and performed port security in the Persian Gulf from 2003 to 2005. "It's the longest deployment elsewhere of any marine mammals, ever," said Tom LaPuzza, a spokesman for the Navy Marine Mammal Program. Though they are not native to the East Coast, environmental studies show sea lions have no adverse environmental impact at Kings Bay. The one concern before they arrived was how they would interact with manatees, but it appears the two species are indifferent to each other, Hugueley said. It takes about 18 months to train the animals in San Diego, where the Navy's marine mammal program is based, Hugueley said. "They actually take a test to make sure they know all the procedures," he said. LaPuzza said 80 bottlenose dolphins and 28 sea lions are available to perform underwater security at locations across the world. Currently they are only working at Kings Bay, but will soon be working at a Navy base in Bangor, Wash. "We saw they were easily trainable and reliable," LaPuzza said. "These animals can do a lot of things. A whole bunch of them do object recovery and mine hunting." Luckily, the marine mammals have only trained and have never had to respond to a threat on base, Hugueley said. Only dolphins bred in captivity and sea lions purchased from breeding programs at SeaWorld are used in the program. Handlers use a combination of divers and mannequins for training. The mannequins are used because they are more difficult to locate and they can be placed at any depth, Hugueley said.


The Ministry of Defence (MoD) has been accused of a “catalogue of blunders” after admitting there have been 16 crashes involving British nuclear-powered submarines since 1988.

More than half of the accidents were in seas around Scotland. According to critics, the repeated errors that caused the accidents suggest that the MoD has failed to learn from past mistakes. A serious incident in the future could cause radioactivity to leak and put public health at risk, they warn. The Royal Navy’s newest nuclear submarine, HMS Astute, is being repaired at the Faslane naval base on the Clyde after it ran aground for 10 hours near the Skye Bridge on October 22. It emerged last week that one of the boat’s fins was damaged in a collision with a tug trying to rescue it. The list of accidents came in a parliamentary answer to the Scottish Nationalist defence spokesman, Angus Robertson MP. In addition to HMS Astute last month, it included eight other accidents in Scottish waters. Two were around Skye, one near Lewis, and one in the Firth of Clyde. Another occurred in the North Channel off the south-west coast and two in unspecified places “west of Scotland”. The incident involving HMS Astute was clearly not a one-off, and the MoD must explain previous groundings. The worst incident was on November 22, 1990, when HMS Trenchant snagged the net of the Antares fishing vessel in Bute Sound, north of Arran. The boat sank with the loss of four lives, and an official inquiry blamed mistakes by submarine commanders. The list also revealed a previously unreported accident in April 2009 somewhere in the Eastern Mediterranean. “HMS Torbay grounded in soft sand and mud to avoid a merchant vessel which was sailing erratically,” an MoD spokeswoman told the Sunday Herald. The craft had not been damaged, she said. “The incident was investigated and no further action was taken.” Other incidents took place off the coast of Northern Ireland, in the north Norwegian Sea, in the Arctic, in the Red Sea, in the Atlantic, and off Australia. In all, Britain’s nuclear submarines have run aground 11 times, collided with two other boats and an iceberg, and snagged the nets of two fishing vessels. The incident involving HMS Astute was clearly not a one-off, and the MoD must explain why previous groundings have not been made public,” said Mr Robertson. “One collision is one too many – especially when it involves a submarine with a nuclear reactor. This catalogue of blunders makes the MoD look even more shambolic, and leaves the credibility of the nuclear deterrent in tatters.” An independent expert on nuclear submarine safety, John Large, argued that the number of accidents is increasing, and the possible hazards growing. He called on the Royal Navy to review its navigational training. “Collisions and groundings not only put the submarine hull at risk of damage but also put the weapons, both nuclear and conventional, and the nuclear reactor in jeopardy,” he said. “If any of these elements were damaged the consequences to submariners and the public at large could be severe.” The 120 or so crew on board are “wholly insufficient” to deal with a major leak of radioactivity, he claimed. The MoD defended its record, saying: “When incidents do occur, they are taken very seriously. Each is thoroughly investigated and lessons are learnt.” But John Ainslie, coordinator of the Scottish Campaign for Nuclear Disarmament, pointed out that detailed reports on submarine accidents are destroyed after 10 years. “This may explain why they repeat the same mistakes,” he said. “It is time the Royal Navy stopped treating the coast of Scotland as a playground for nuclear submarines.” 

October 2010 HMS Astute grounded off the Isle of Skye

April 2009 HMS Torbay grounded in the Eastern Mediterranean

February 2009 HMS Vanguard collided with the French submarine Le Triomphant in the Atlantic

May 2008 HMS Superb grounded in the Red Sea

May 2003 HMS Tireless struck an iceberg while on Arctic Patrol

November 2002 HMS Trafalgar grounded on Fladda-Chuain, north of Skye

November 2000 HMS Triumph grounded west of Scotland

November 2000 HMS Victorious grounded on Skelmorlie Bank in the Firth of Clyde

July 1997 HMS Trenchant grounded off the coast of Australia

July 1996 HMS Repulse grounded in the North Channel off south-west Scotland

July 1996 HMS Trafalgar grounded off the Isle of Skye

March 1991 HMS Valiant grounded in the North Norwegian Sea

November 1990 HMS Trenchant snagged the fishing vessel Antares off Arran

October 1989 HMS Spartan grounded west of Scotland

November 1989 HMS Sceptre snagged the fishing vessel Scotia near Lewis

July 1988 HMS Conqueror collided with the yacht Dalriada off the coast of Northern Ireland


'Scandalous' submarine deal highlighted ahead of Nato summit

to leaders are heading to Lisbon for a summit on Friday (19 November) at a time of escalating economic problems in Portugal, due, in part, to a submarine deal, with corruption investigations launched both in Germany and Portugal into the way the deal was made. Unlike non-Nato Ireland, whose record public-deficit of over 30 percent is mostly due to bailing out banks in the wake of the financial crisis, the southern European country's accounts are also weighed down partly by a controversial submarine deal with Germany that dates back to 2004 but that has to be paid for now. Signed during at a time when current European Commission chief Jose Manuel Barroso was head of the Portuguese government, the deal worth €1billion is the biggest military purchase in the country's history. Payments for the two German submarines amount to 0.6 percent of the country's gross domestic product (GDP), at a time when the budget deficit reached of 9.3 percent of GDP last year. According to Portuguese Socialist MEP Ana Gomes, the country's current centre-left premier, Jose Socrates, has been "very vocal" in blaming the submarine purchase for the country's widening deficit and to justify the austerity measures that were adopted last month. With corruption investigations launched both in Germany and Portugal into the way the deal was made, Ms Gomes has called the deal "scandalous". What we don't see is political courage on the part of the EU institutions, notably the European Commission, to actually tackle this question of corruption that is at the root of the current crisis. Corruption in the management of banks, which were not properly regulated and supervised and corruption in the public sector in relation to defence procurements." With a similar submarine corruption probe involving the same German company (Man Ferrostaal) being investigated in relation to Greece, the first euro-area country that needed a bail-out, Ms Gomes said it is unacceptable that Brussels is not launching an inquiry into "this European web of corruption." The Portuguese MEP said she is "disappointed" that her government has not stood up to the German administration and frozen payments until the corruption case is finalised: "It would have been a courageous gesture to show that Portugal is a country whose people are victims of corrupt practices between German and Portuguese officials and companies."


HMS Astute submarine.

A nuclear-powered submarine has run aground off the coast of a Scottish island, the Ministry of Defence confirmed. The incident involving HMS Astute happened near the Isle of Skye. There were no reports of any injuries. A Ministry of Defence spokesman said: "We are aware of an incident involving one of our submarines off the Isle of Skye. This is a not a nuclear incident. "We are responding to the incident and can confirm that there are no injuries to personnel and the submarine remains watertight. There is no indication of any environmental impact." It is understood that the submarine's crew is waiting for high tide so they could free the vessel. In June 2007 the mammoth £3.5 billion nuclear-powered HMS Astute was named and launched by the Duchess of Cornwall. The submarine weighs 7,800 tonnes, equivalent to nearly 1,000 double-decker buses, and is almost 100 metres (328ft) long. Its Spearfish torpedoes and Tomahawk cruise missiles are capable of delivering pin-point strikes from 2,000km (1,240 miles) with conventional weapons.


The Indonesian Navy (TNI AL) needs 39 more submarines to protect the country`s vast marine territory against external threat.

"Indonesia needs to increase its naval fleet. We have vast marine territory which needs intensive security to protect it against external disturbance," Deputy Naval Chief of Staff Vice Admiral Marsetio said here on Wednesday.  Vice Marshal Marsetio was in Bogor to attend a unit commanders roll call initiated by the Marine Corps. A total of 84 personnel from different command units at the Marine Corps took part in the event.  He said the Indonesian Navy`s main armament system was still far from adequate. "Our main armament system needs to be increased and strengthened. We need to increase the number of submarines as we now only have a few units."  As the world`s largest archipelagic country, Indonesia saw the urgency to have submarines in adequate numbers to protect its marine sovereignty, he said. "We need 39 more submarines," he said. The addition of the 39 submarines would hopefully help the Indonesian Navy keep the country`s marine territory intact, he said.  "The submarines will be stationed in various parts of the country`s marine territory. We will give extra security particularly on outlying islands and waters prone to foreign countries` claim," he said.  "We must keep the sovereignty and territory of the Unitary Republic of Indonesia intact. We will not let an inch of land go to foreign parties," he said.


Russia launched a nuclear-powered attack submarine that took 17 years to build because of funding shortages following the Soviet collapse.

President Dmitry Medvedev said the Severodvinsk should "increase our military might and our naval potential, and strengthen Russia's position in the world's oceans." "Russia simply must modernize its navy, we must build the most modern ships," Medvedev said at the ceremony at the Sevmash shipyard in the White Sea port that shares the vessel's name. Analysts said the launch of the Severodvinsk, the first in a new class of submarines, was a step in that direction, but cautioned that the vessel is not complete and still faces tests. "Putting it in water does not show that it is ready," said Konstantin Makiyenko, deputy director of the Moscow-based Centre for Analysis of Strategies and Technologies. Officials at the Sevmash said the submarine is 80 percent complete and that trials are to begin this summer, according to the Itar-Tass news agency. State-run RIA said the 119-metre (393-foot) Severodvinsk is the first Yasen/Graney class submarine, and is designed to carry long-range nuclear-capable cruise missiles and other armaments. RIA and Itar-Tass reported that the Severodvinsk is expected to enter service by 2011, but Makiyenko said that was "extremely optimistic." He said it might take three to five years. He also said it is unclear whether Russia will have the funding to produce several more submarines of the same class if the Severodvinsk is successful. Russian plans to build at least six of them, according to state-run RIA news agency. It said work began last year on the second submarine in the series, dubbed the Kazan. Construction of the Severodvinsk began in 1993, but Makiyenko said it was effectively frozen for about a decade because of funding shortfalls.


Navy gives new minisub a try After Northrop failure.

The Advanced SEAL Delivery System based in Hawaii was supposed to be the first in a fleet of high-tech minisubs that were to cost $80 million apiece, ride attached to a larger attack submarine, and deliver commandos undetected into harbours. Instead, the Northrop Grumman effort spiralled to more than $885 million, with only one sub built. A November 2008 fire as a minisub's batteries were recharging provided the death knell to the troubled program. But where others saw embarrassing failure, Brett Phaneuf saw commercial opportunity. Phaneuf's company, Submergence Group LLC, which builds experimental submarines, thought it could build a better mousetrap, or at least a more economical minisub for Navy use. "We were told that it couldn't be done and it would cost hundreds of millions of dollars and we thought, 'Well, how hard can it be?' " he said. "So we decided to take a shot at it with our own money to try to see if we could crack it." Development took two years. The Navy liked what it saw, according to Phaneuf, president of Submergence Group, based in Chester, Conn. His 25-foot-long S301 mini-sub was moved last fall to Navy SEAL Delivery Vehicle Team One's facility on the Pearl City Peninsula, where the hulk of the much costlier Advanced SEAL Delivery System sub still resides. Development and production of the S301, capable of transporting two pilots and six divers, cost less than $10 million, Phaneuf said. He emphasized that the minisub is no replacement for the much larger and more complex ASDS, but it shows what's possible. Essentially, what it is, is a technology demonstrator, to show that a small submarine could be built ... that would fit inside a dry deck shelter on a host submarine," Phaneuf said. The minisub arrived as a demonstration project, but a federal notice posted Feb. 9 signalled the Navy's intent to lease the S301 for use in Hawai'i for up to a year longer. In the meantime, Submergence Group said that in several weeks it will move another of its subs, a 30-footer called the S201 that can dive to 1,000 feet, to Pearl City. Enough of Submergence Group's efforts are now being devoted to Hawai'i that Phaneuf closed its operations center in Virginia City, Va., and moved some of the staff to Pearl City Peninsula and will be hiring a few more. U.S. Special Operations Command at MacDill Air Force Base in Florida said in an e-mail that "knowledge gained from this lease will lower overall risk and program costs of future undersea mobility acquisition programs. Additionally, the S301 is a civilian submersible whose performance will be evaluated in order to determine the most economic and operationally sound way ahead for Naval Special Warfare short-range submersibles."

In the wake of the ASDS problems, Special Operations Command is pursuing development of a Shallow Water Combat Submersible, a SEAL transport vehicle that would be launched from dry deck shelters mounted on larger attack submarines and require the use of scuba gear. Dry deck shelters are 38-foot removable compartments that allow SEALs access to the watertight module from a submarine via a hatch. Once SEALs are in the vehicle, the shelter is flooded and a hatch is opened, allowing the vehicle to exit while underwater. One of the reasons for the development of the ASDS minisub was to keep SEALs in a dry environment prior to a mission rather than expose them to the energy-sapping ocean cold for long periods in the SEAL Delivery Vehicle.

A 2009 federal notice for the development of the replacement Shallow Water Combat Submersible said the vehicle must be capable of transporting SEALs for up to 12 hours while they breathe from scuba gear. Naval analyst and author Norman Polmar said he thinks the Navy eventually has to again go the minisub route for SEAL insertion. "I would say yes, because you really want a system that you can put on a submarine, take 2,000 miles, and have it clandestinely launch from the submarine and take four or six guys into a harbor or somewhere," Polmar said. A new $47 million compound for SEAL Delivery Vehicle Team One was completed in 2004 at Pearl City Peninsula with facilities for the 65-foot-long ASDS sub. At the time, the facility housed five Mark 8 Mod 1 SEAL Delivery Vehicles and three dry deck shelters, the Navy said. The Navy has two SEAL Delivery Vehicle teams. Special Operations Command said the Hawai'i unit has about 300 officers, enlisted members and civilians who are a mix of SEALs, combat support sailors and technicians. Phaneuf said the S301 minisub was built to civilian American Bureau of Shipping standards and not Navy requirements because a civilian research use might be found in the future. The 13-ton minisub can operate at greater than 600 feet, according to the company, and "lock out," or allow divers to enter the sea while submerged. It is powered by lithium ion batteries. Because the minisub is made to civilian standards, Submergence Group employees and not Navy divers operate it in tests in Pearl Harbor, Phaneuf said. The sub also is not used for testing in dry deck shelters on attack submarines, but Phaneuf said the S301 would fit inside, and he's having a dry deck shelter simulator fabricated to do underwater testing with the minisub. Phaneuf said the S301 testing is an opportunity for the Navy to learn how the commercial sector builds submarines. "It's a really good partnership because the government didn't have to spend a nickel to get this thing built," he said.


North Korea cease all military cooperation with South Korea


In addition, the main headquarters of the Korean People’s Army informed

the South Korean armed forces that the DPRK immediately strike if South Korean ships violate maritime border between the two Koreas in the Yellow Sea. Regular statements by North Korea comes amid escalating crisis in the inter-Korean relationship associated with the death of South Korean corvette “Cheonan. The experts who prepared a report on the incident, agreed that the ship sank after it was torpedoed by a North Korean submarine.  At the same time the statement the DPRK official news agency says that shooting, Cheonan, has been profitable the U.S. to increase tensions between North and South, Pyongyang is not got no benefit from this incident. North Korea has never needed the world to the year 2012 to reach the planned prosperity, explain its power. Property of the South Korean version of the death of the ship is and with Russia. In this regard, the navy sent its representatives to Seoul

to place to get acquainted with the outcome of the investigation. Two submarines, the DPRK returned to their base radio station Ekho Moskvy, referring to South Korean media. Previously reported Most – from 70% to 80% – of North Korean submarines are based along the east coast. Great depth to create a submarine North Korea “a haven,”

said South Korean newspaper The Chosun Ilbo. North Korea has about 70 submarines – 20 class submarines “Romeo” and 1800 m, 40 – Class “Shark” (325 m) and 10 – classes, “Salmon” (130 tons). It is one of the last suspects Commission torpedo sank the corvette Cheonan. On the east coast of the DPRK are four submarine base. The largest of these databases – and Chaho Mayangdo. With the base Chaho and disappeared four class submarines “Shark.” Small submarines, North Korea, apparently, even with the 90-ies regularly enter the water areas of South Korea. Entries found on board captured the 1998 North Korean submarine indicates the number of such crossings. Naval Command in South Korea has deployed anti-submarine ships, corvettes and other boats to search for the disappeared from radar screens of North Korean submarines.


Japan to Beef Up Submarines to Counter Chinese Power

Japan is to increase its submarine fleet for the first time in 36 years, the Sankei Shimbun reported Sunday. The plan apparently aims to counter China's naval build-up by partially filling the void created by the U.S. reduction of submarines in the Pacific area. The paper said the Japanese government plans to increase the number of submarines from the current 18 including two trainer submarines to more than 20 when it revises its Defence Program Guidelines by year's end. Tokyo has maintained 18 submarines since it first formulated the guidelines in 1976, although it has strengthened their capability by replacing superannuated vessels and with new ones. Japan's new class of diesel-powered Soryu submarines But now that advanced technology gives them a longer lifespan, it has opted for the new plan to increase the total number, the daily reported. Exactly how many the country will have is not known. Even more than 20 is no match for China, which has 62, but experts say most of the Japanese submarines are new types with superior capability.  The immediate cause for the decision was apparently China's plan to build an oceangoing fleet. China declared the plan at a fleet review in Qingdao, Shandong Province in April. It envisions extending its area of operations to the Pacific and Indian Oceans.  Out of the 62 Chinese submarines, seven are nuclear-powered and 55 diesel-powered. China recently built an underground submarine base on Hainan Island, which overlooks the South China Sea.


Military Increasingly Convinced of N.Korean Sub Attack.

 Military officials and experts believe that if a North Korean torpedo was involved in the sinking of the South Korean Navy corvette Cheonan, it was probably launched from a 325-ton Shark-class submarine. The sub ranks between a full-blown submarine and a mini-sub in terms of size. South Korean military intelligence are reportedly focusing on the fact that one or two Shark-class submarines from a submarine base in Cape Bipagot, South Hwanghae Province are unaccounted for during the time of the Cheonanâ sinking. The Bipagot submarine base is around 80 km from Baeknyeong Island. Shark-class submarines can travel at speeds of 13 km/h under water, so it would take them between six and seven hours to reach Baeknyeong Island. Intelligence officers and experts believe the sub made the trip under water, since travelling on the surface of the water would have exposed it to South Korean and U.S. spy planes and surveillance satellites. A drawback of the Shark-class diesel-powered submarines is that they need to surface regularly to recharge their batteries and ventilate, a process known as snorkelling. during this process, the ventilation device can be detected by radar and other surveillance equipment. The snorkeling equipment is not big, so there is a slim chance that it was detected by South Korean radars while the sub was in North Korean waters, said one source. The military believes a North Korean sub could have approached by taking a detour through open seas left of Baeknyeong Island, instead of coming in straight between Hwanghae Province and Baeknyeong Island. That is because the underwater currents are extremely fast in that area and it is closely monitored by South Korean forces. There is also the possibility that a sub could have drifted into waters near Baeknyeong Island with its engines shut off. Between 3 p.m. and 9 p.m. on March 26, the day the Cheonan sank, the currents flowed north to south and shifted direction from south to north after 9:40 p.m., said military expert Kim Byung-ki. There is the possibility that a North Korean sub was lying in wait and used the northerly current to return to North Korea after the attack. Once it infiltrated waters near Baeknyeong Island, it could have fired a torpedo around 1 km to 2 km away from the Cheonan in deeper waters. and a mid-sized torpedo, weighing more than 200 kg rather than a small one weighing between 50 kg to 80 kg, is being cited as the probable weapon, judging from the huge damage the Cheonan suffered. A lingering question is why the Cheonanâ radar system was unable to detect a torpedo attack, if that was indeed the cause of the sinking. The Defence Ministry says the sonar aboard a South Korean warship like the Cheonan has a 70-percent chance of detecting submarines or semi-submersibles around a 2 km radius. But retired naval commanders say the chances are actually only 50 percent, so sonar officers could have been unaware of an approaching torpedo.


Turkey, with help from Germany, to become 'submarine manufacturer'

ANKARA — Turkey has launched a project to produce an advanced naval submarine. Turkey's Defence Ministry and Navy have been working with Germany in the co production of four electric-diesel submarines. The co production effort has taken place with Germany's ThyssenKrupp for the Type 214 submarine.  "This is a huge project that will make Turkey into a submarine manufacturer," an official said.



KILO Submarines.

Russia sees a growth market for its Kilo class diesel electric submarines, a 30-year-old design that first entered service in 1982. So far, 49 have been built, 42 are still in service and six are under construction. Russia sees foreign markets that need at least another 36 Kilos. It may be an old design, but it is mature and has been updated with modern electronics and quieting technology (that makes it more difficult to detect under water.) The Kilos weigh 2,300 tons (surface displacement), have six torpedo tubes and a crew of 52. They can travel about 700 kilometers under water at a quiet speed of about five kilometers an hour. Top speed underwater is 32 kilometers an hour. Kilos carry 18 torpedoes or SS-N-27 anti-ship missiles (with a range of 300 kilometers and launched underwater from the torpedo tubes.) Kilos can stay at sea 45 days at a time. It can travel at periscope depth (using a snorkel device to bring in air) for 12,000 kilometers at 12 kilometers an hour. The combination of quietness and cruise missiles makes Kilo very dangerous to American carriers. North Korea, China, India, Indonesia, Romania, Algeria, Vietnam and Iran have also bought Kilos. The main reason for purchasing Kilos is that they cost about half what equivalent Western subs go for.  The biggest potential competitor for Kilo is China, which shamelessly copies Russian military designs. The Chinese Type 39A, or Song class, looks just like the Russian Kilo. This all began in the 1990s, when the Chinese began ordering Russian Kilo class subs, then one of the latest diesel-electric design available. Russia was selling new Kilos for about $200 million each, which was about half the price other Western nations sold similar boats. Then the Chinese built two Songs, the second one an improvement on the first. These two boats have been at sea to try out the technology that was pilfered from the Russians. A third Song was built, and appears to be a bit different from the first two. The first Song appeared to be a copy of the early model Kilo (the model 877), while the second Song appeared to copy the late Kilos (model 636). The third Song boat appears to be a further evolution. Russia has warned China of trying to export these copies, in competition with the Russian originals.


Jin SSBN Flashes its Tubes

One of China’s two new Jin-class SSBNs was photographed with two of 12 missile tubes open when it visited Xiaopingdao Naval Base in March 2009. The Jins are being readied to carry the JL-2, a single-warhead regional sea-launched ballistic missile that was most recently test-launched in May 2008. The class may become operational soon and replace the old Xia from 1982. Xiaopingdao Naval Base, which is where I identified the Jin-class for the first time in 2007, serves as an outfitting and testing facility for new submarines and used to be the homeport of the single Golf-class diesel submarine China used for many years as a test launch platform for its first ballistic missile. Two or three Jin-class SSBN have been under construction, and it remains to be seen if China will build up to five as projected by U.S. intelligence. China’s nuclear submarines appear to be the noisiest nuclear submarines in the world and will probably be highly vulnerable at sea. The U.S. Office of Naval Intelligence described in August 2009 that two of China’s SSBNs (probably one Jin and the Xia) were based at the Northern Fleet Base in Jianggezhuang, and the third boat (probably the second Jin) at the Southern Fleet Base on Hainan Island. I identified the Jin at Hainan in February 2008


Is Pakistan Navy Interested in Sang-O Class Submarine?

Name: Sang-O
Operators: Democratic People's Republic of Korea (North Korea)
Subclasses: Attack version + Infiltration + Reconnaissance
Service: Active
General characteristics :
Type: Submarine
Displacement: 370 tons (submerged)
Length: 34m
Beam: 3.8m
Propulsion: Diesel-electric: 1 small diesel, 1 electric motor, 1 shaft
Speed: 7.5 knots (13.9 km/h) surfaced
7 knots (13 km/h) snorkeling
9 knots (17 km/h) submerged
Range: 1,500 nautical miles (2,800 km)
Test depth: 150 metres, capable of bottoming
Capacity: 0 (10/11 in recce version)
Complement: 15 crew
Sensors: Radar
Processing: Civilian Furuno I-band radar
Systems: Passive RWR/ESM/SIGINT Golf Ball radar & Snoop Plate radar
Sonar: Trout Cheek sonar
Armament: Two 21 inches (530 mm) torpedo tubes fitted with Russian 53-65KE torpedoes
capable of minelaying
Notes: Fitted with a snorkel

The Sang-O class submarines are currently in use by North Korea, and are the country's largest home-built submarines units.

ran navy equipped with four new submarines

TEHRAN — Iran's navy on Sunday took delivery of four new mini submarines of the home-produced Ghadir class, media reports said. The navy already owns seven submarines of this type which weigh 120 tonnes and were first launched in 2007.Iran has described the Ghadir as stealth submarines, hardly detectable by sonar and aimed at coastal operations in shallow waters, notably in the Gulf. The vessel is based on North Korean models of the Yono class and can shoot torpedoes, but their main tasks  appear to be moving commandos, laying mines and reconnaissance missions, experts say. Iran's inventory of submarines patrolling Gulf waters also includes up to three Russian-built Kilo class diesel submarines bought in 1990s and a Nahang, an Iranian-built light sub weighing 500 tonnes that was first launched in 2006. In 2008 Iran started building a new submarine named Qaem which is due to be launched within days, Iran's army chief Ataollah Salehi said last week, describing it as "semi-heavy" and capable of operating in the high seas such as the Indian Ocean or the Gulf of Aden. Little information has been released about this home-produced vessel, which is said to be capable of firing missiles and torpedoes.



At the Almirante Storni Shipyard in Buenos Aires on the 22nd January, the hull of Type TR-1700 submarine ARA “San Juan” was cut open to facilitate replacement of diesel generators. With this  act the Argentine navy has recovered a technological capability lost since the 90s when the then Astilleros Domecq Garcia Shipyard was closed and deactivated. The shipyard was re-opened in 2003 and since then a number of technological capabilities have been restored, including the recovery of battery units, providing a firm base for the local integral overhauling, maintenance
and construction of submarines. Project PAM (Patrulleros de Alta Mar) is for up to 5 OPVs of 1,800 tons. With a length of over 80m, the ships are to have diesel propulsion and to be armed with a 40mm gun. The ships will be built at the Rio Santiago shipyard to the same Fassmer design as the Chilean boats with construction expected to begin in 2009.

An official confirmation of plans to acquire four diesel electric submarines, built to a design derived from the SCORPENE licensed from DCNS, came in December 2008. Three conventional boats will be built at a new shipyard to be constructed by local engineering firm Odebretch at Itaguai, 500km south of Rio de Janeiro. The new shipyard will be known as Arsenal de Sepetiba and will include a new home base for the Submarine Force, set to move from its current site at Naval Base Almirante Castro e Silva, at the Bay of Guanabara, close to Rio de Janeiro. DCNS will build the lead of the series at its Cherbourg Shipyards. The total cost of the project, including the construction and fitting of the shipyard and the building of four submarines, is said to be in the area of US$4Bn. According to local sources, work towards the nuclear submarine during the last three decades had accumulated US$1.1Bn by by 2006. To date, the official line is that an additional budget allocation of no less than US$1.5Bn will be needed, in order to
facilitate construction of a first nuclear powered submarine by 2020. However, many observers believe that current financial and schedule expectations surrounding the project are over-optimistic – year 2030 would be a more realistic deadline to see a Brazilian nuclear powered submarine going to sea, if a budget close to US$2.5Bn is secured.
The main role of the Navy, according to the New Defence Strategic Plan is to provide security to the new oil and gas fields of TUPI and JUPITER off the coast of Rio de Janeiro. Despite the financial constraints during recent years, the Brazilian Navy deploys the largest fleet in South America. Regarding amphibious capabilities, the single “Newport” class LST “Mattoso Maia” and both “Thomaston” class LPDs “Ceara” and “Rio de Janeiro” were re-inforced between 2007 and 2008 with the acquisition of the ex-Sir Galand 2008 re-named “Garcia D’Avila” and ex-Sir Bedivere renamed “Almirante Saboia,” both joining the fleet in Brazil after completing a refit in Falmouth in July 2009. In 2005, the six “Niteroi” class frigates completed the MOD-FRAG refit programme,
receiving a complete upgrade of their combat systems. According to reports, plans exist to replace them during the next decade by six FREMM multipurpose frigates equipped with cruise missiles and a long range air defence system. In September 2006 the Brazilian Navy ordered two NAPA 500-class offshore patrol vessels (OPVs) based on the Vigilante 400 CL 54 design from French shipbuilder CMN Group. Displacing 477 tons the ships are being built locally at Brazil’s INACE (Industria Naval do Ceara SA) yard at Fortaleza and were due for delivery in 2009. A further 4 OPVs have been approved, with a total of eight ships planned. The aircraft carrier “Sao Paulo” is the only vessel of this kind in service in South America. Recent reports about plans to acquire and modify some S-2 aircraft for ASW and AEW roles, as well as to upgrade the AF-1 SKYHAWK jet fighter bombers or a guided weapons capability including anti-ship missiles, indicate intentions to develop the potential of this ship.  Brazil is on its way to deploy a fleet including an impressive submarine force by the end of the next decade. It will be made up of nine modern and capable diesel electric boats, including the “Tupi” and “Tikuna” class, which are going to be fitted
with a new combat system provided by Lockheed Martin and Mk48 heavyweight torpedoes.

On 15th October 2008, Chile’s government-owned shipyard Astilleros y Maestranzas de la Armada (ASMAR) launched the second of 4 patrulleros de zona maritime (PZM) OPVs under the Chilean Navy’s Danubio IV project. The 1,850 ton boats are destined to patrol Chile’s extensive Pacific and Antarctic waters providing protection in the EEZ and a SAR capability. The 80m PZMs are powered by Wartsila engines to give a speed of 20kt and a range of 8,600nm. Armaments consist of a 40mm naval gun and machine guns. The ships can support a 322C Cougar helicopter and two 7m rigid inflatable boats (RIB). The first ship, Piloto Pardo, was commissioned in June 2008 with the second ship, Policarpo Toro, due to handover in early 2009.

2 OPVs are reportedly being built for delivery in 2010.

Plans to acquire 1 OPV. Modernisation of both Type 209 Submarines is planned. Replacement of the 2 Leander Class Frigates is reportedly under consideration.

2 Oaxaca class OPVs are being built, for commissioning in 2010. A further 2 are planned.

Replacement of the Submarine Flotilla is under consideration. Up to 3 LSLs are planned.

Plans to acquire 1 OPV.

Navantia is building four 2,400 ton POVZEE (Patrullero Oceanico para la Vigilancia de la Zona Economica Exclusiva) OPVs for the Venezuelan Navy at its Puerto Real shipyard near Cadiz. Construction commenced on the 11th September 2008 with deliveries expected in 2010-11. They will carry out patrolling tasks in Venezuela’s EEZ. They will eventually be accompanied by four 76m, 1500 ton Buque de Vigilancia de Litoral (BVL) coastal patrol ships that Navantia is building for Venezuela at its San Fernando yard. The first vessel, Guaicamacuto, was launched on the 16th October 2008 and will commission in 2009 with the remainder to be
delivered by 2011. Acquisition of 3 new submarines is reportedly under consideration.


Indian Navy Sees Midget Submarines as Primary Threat

NEW DELHI --- The Indian Navy and Coast Guard believe that improvised mini-submarines constitute the nation's primary emerging threat. These may range from swimmer-delivery vehicles of the type employed for recreational scuba diving to remotely operated vehicles and autonomous underwater vehicles. These types of vehicles are already in service with the navies of Iran, Myanmar and Pakistan (all having procured them from North Korea). As has been amply demonstrated by the navies of North Korea and Iran, these small vessels make good platforms for ambushes even at submerged depths of 150 feet, enough room for the midget submersible to maneuver. These submarines cannot travel too far on their own, and depend on support vessels to extend their range. However, in their shallow water element where sonar returns are cluttered, they can prove quiet and deadly. Their capabilities include the ability to lay mines or insert commandos on beaches. As North Korea demonstrated with the sinking of the Cheonan, attacks from midget submersibles can also include torpedoes armed with 250-kilogram warheads. The Indian Navy believes that two factors heighten the risk of an ambush by midget submarines against Indian warships. These are the complex sonar picture of shallow water where these small submersibles can operate, and the absence of a network of seabed-mounted sonar transducers dotting the Indian coastline. With the exception of Port Blair, none of the 200 non-major ports in India are equipped with any identification or surveillance systems, and there are currently no concrete ground rules for patrolling India’s inshore coastal areas and the numerous creeks and rivulets along the coastline. In early 2009, the Indian Navy proposed that a Maritime Security Adviser (MSA) be appointed, along with a supporting Maritime Security Advisory Board (MSAB), to take stock of the growing oceanic influence on India’s foreign policy. The intention was for the MSAB to coordinate the operations of more than 14 government departments and agencies responsible for various elements of maritime affairs with several security agencies with jurisdictions along India’s coastline. This proposal has not been adopted.


Russian nuclear submarine leased to India

MOSCOW - Russia has handed a new nuclear-powered submarine over to India for a 10-year lease, Russian news agencies reported on Friday, two years after an accident during testing killed 20 people. The Nerpa, under the command of an Indian crew, left its base on Russia's Pacific coast earlier this week, bound for an Indian naval base, Interfax news agency quoted a source in Russia's militry-industrial complex as saying.

Citing a source in Russia's Pacific Fleet, RIA news agency said the submarine was manned by a mixed Russian-Indian crew. Another RIA report, citing the plant that built the Nerpa, said the submarine had not yet been officially handed over to India. It said the Indian crew was only training aboard the Nerpa at sea. Russia's Defence Ministry and navy could not be immediately reached for comment. The press service of the Pacific Fleet declined to give any details. The Nerpa is the latest of a class of attack submarines codenamed "Akula" by NATO, which are armed with torpedoes and cruise missiles. Building of the Nerpa began in 1993 but the submarine was only launched and started sea trials in 2008 due to the piecemeal funding of its construction. In November 2008 the submarine was on sea trials when its fire extinguishing system switched on unexpectedly. Twenty people died after inhaling the toxic gas used as a fire suppressant, authorities said. The accident was the deadliest to hit Russia's navy since 2000, when the Kursk nuclear submarine sank beneath the Barents Sea, killing all 118 sailors on board. Quoting its source in the fleet, RIA said that since January the Nerpa had made a voyage to Russia's Kamchatka peninsula, after which the plant that built it and other specialists "reduced its underwater noise to a minimum". He also said the vessel's manoeuvrability deep underwater had been improved. "After the nuclear submarine was brought in line with all Western standards, a submarine crew arrived from India," he said. India, Russia's close economic and political partner since Soviet days, accounted for a quarter of Moscow's arms exports last year, according to estimates by the Centre for Analysts of Strategies and Technologies, a Moscow-based defence think-tank.


India Responds to China.

The breakneck speed at which China has been moving to build up its naval might is causing concern in the international community, particularly in Japan, the United States—and in India. Recent decisions by China’s People’s Liberation Army-Navy (PLAN) have left China-watchers wondering where the Chinese juggernaut will stop. The latest decision to garner attention has been the apparent decision by the Central Military Commission—China’s highest military planning body—to give the green light to the building of two new nuclear-powered aircraft carriers. Meanwhile in India, construction work on at least four nuclear submarines is in full swing, while the indigenous Arihant nuclear-powered submarine has already been launched (India plans to have at least 30 submarines by 2030 (although this target may be tough to achieve with the submarine fleet expected to shrink to 16 by 2012 with the decommissioning of two Foxtrot submarines).


The future of Britain’s nuclear deterrent in the age of austerity

Preparing for the unthinkable to happen means that for the foreseeable future the UK is going to require some form of a nuclear deterrence to protect its national security interests. It would be unwise to assume that the current status quo of security threats emerging from non-state actors will remain throughout the 21st century. A political decision regarding the future of our nuclear deterrence will be required over the next five years should we wish to maintain a nuclear capability. During the election campaign the Conservatives and Liberal Democrats had opposing views concerning the future of Britain’s nuclear deterrence. The Conservatives backed Labours plans for a ‘like-for-like’ replacement and the Liberal Democrats opposed such replacement but acknowledged that Britain required some form of nuclear deterrence. Some estimates claim the renewal will cost £100Billion over a fifty-year period and it has been argued that cheaper alternatives could provide a nuclear deterrence, such as the development of nuclear equipped Typhoon fighters at 1/10th of the cost. In the aftermath of the election the agreement made between the Liberal Democrats and the Conservatives placed the future of Trident in jeopardy, promising to include in the Strategic Defence and Security Review (SDSR) to ‘ensure value for money.’ Departmental infighting over who pays for the project between the MoD and Treasury has made it more likely that the project will be postponed or scrapped altogether. If the United Kingdom is to maintain its nuclear deterrence during the ‘Age of Austerity’ then it is essential that it should provide the British taxpayer with real value for money while delivering a guaranteed, affordable and most of all relevant nuclear deterrence.

Despite the change in threats to national security, nuclear deterrence has changed little since the Cold War. In order for deterrence to be successfully achieved it is essential to ensure that the state has a guaranteed nuclear capability that is protected form an aggressor’s pre-emptive strike. The UK has since the 1960s maintained a so called second strike capability through four ballistic missile submarines which are deployed under the Continuous At-Sea Deterrence (CASD) policy. Under this policy at any one time at least one nuclear armed submarine is on patrol at any time, ensuring that a nuclear response is constantly available. Due to commitments under various international treaties and the Nuclear Non-Proliferation Treaty (NPT) all of the Nuclear Weapons States (NWS) - as defined by the NPT  - have reduced the number of nuclear weapons since the end of the Cold War. The UK significantly reduced its own nuclear stockpile after the 1998 Strategic Defence Review, with the dismantling of the air-launched free-fall warheads and through a reduction of warheads carried on the Vanguard-class submarines to around 160. Despite the reductions made by the NWS, the number of states developing or possessing nuclear weapons has increased. In the twenty-first century there are fewer nuclear weapons with more fingers on the button. Working towards a nuclear-free world and reducing the numbers of nuclear weapons deployed should be at the heart of Britain’s future deterrence, but not at the cost of national security.

The UK's four Vanguard-class submarines each carry 16 Trident missiles with each missile having the capability to delivering a maximum of 8 nuclear warheads. Each submarine therefore has the ability to carry a maximum of 128 nuclear warheads. The number carried is actually around 60, which gives the government with a wide range of options for a wide range of situations. The yield of each warhead varies with some being as small as 10-15 kilotons for sub-strategic use and others being as large as 80-100 kilotons. The larger yields allow the UK to maintain the ‘Moscow Criterion’, which refers to the ability of the UK to strike at the heart of a highly centralised Soviet style decision making apparatus. It is the policy of maintaining the ‘Moscow Criterion’ and the continuation of the CASD that has attracted criticism for Trident being a Cold War weapons system. In reality Trident provides the UK with a constant and assured nuclear deterrence against a range of modern threats.

There are few alternatives to Trident and many lack the ability to provide the UK with an assured and credible deterrence. There is a suggestion that using existing aircraft to deliver nuclear weapons could cost only a tenth of the current proposals. Aircraft are however at risk of being destroyed before they reach their intended target and have a more limited range compared to the Trident missiles. The development of ground based alternatives such as Inter-Continental Ballistic Missiles suffer the risk of being destroyed in a first strike and would be opposed by the majority of the British public due to the proximity that such a system would be to a population centre. A submarine based deterrent gives Britain the ability to effectively hide its weapons from a potential adversary, making a first strike designed to knockout a nuclear deterrence almost impossible, ensuring its second strike capability. A submarine  based deterrence suffers from the astronomical cost of developing advanced sonar and underwater stealth capabilities that are required to protect the vessels from attack.

Before the 2010 election Liberal Democrat MPs Menzies Campbell and Nick Harvey published a review of the Trident replacement and proposed alternatives to the plans. Including some of the alternatives mentioned above the review included: extending the life of the current Vanguard-class fleet to beyond the 30 years currently planned; reducing the number of submarines, ending the policy of CASD; and developing a modified Astute-class submarine to carry either a small number of Trident missiles or nuclear tipped cruise missiles. Under the current Trident proposals the Vanguard fleet is already due to have their operational life extended by an extra five years at the cost of £250million. It is possible that extending the life of the current force beyond this five-year extension could place the ships and the crew in danger due to the age of the ships hulls and nuclear reactor onboard. American nuclear weapons policy specialist Richard Garwin and others claim that the MoD’s arguments against life extension beyond five years are due to the wish to preserve the UK’s defence-industrial base rather than fears over safety and cost, and that extending the life of the Vanguard-class to 45 years as the US government is planning with their similar Ohio-class submarines is a possibility. The MoDs concern for safety and the defence-industrial base may however be justified as the UK and US have different safety standards regarding nuclear material and the added expense that would likely be incurred after a large gap between the last Astute being constructed and the Vanguard replacement being ordered. Ending CASD as proposed in the review paper would reduce the running costs of the program and reducing the nuclear weapons possessed by the UK. This would be achieved by reducing the number of boats from four to two or even one. There would however be little reduction in the build cost of the project due to the costly research and development of the boats systems as well as the specialist equipment and parts that come at an excessive cost to the supplier. Building several boats decreases the individual build costs and provides redundancies against damage or losses.

Nuclear tipped cruise missiles bring the advantage of dramatically reducing the cost for the development and operation of the nuclear deterrence but their use undermines its credibility. Cruise missiles travel at relatively low speeds and have a much shorter range than their ballistic missile counterparts, making them susceptible to being shot down before they reach their intended target. Ballistic missiles on the other hand are notoriously difficult to intercept. More dangerously however, Britain’s possession of nuclear tipped cruise missiles could escalate a potential conflict that Britain’s forces are involved in. The flight path of cruise missiles is the same, nuclear tipped or not, meaning that a adversary would not be able to differentiate between the launch of a conventional warhead or an attempted nuclear first strike, potentially inviting an immediate nuclear response. Ballistic missiles - such as Trident  - have a very different flight path to cruise missiles and they only carry nuclear weapons, meaning that if another state detects their launch they know what it contains. The development and use of nuclear-tipped cruise missiles should be avoided.

The current proposals for renewing Trident do provide the UK with one of the few methods of an assured and credible deterrent, but the cost of the project does raise questions concerning its value for money. In order to better justify the added expense of replacing Trident, the next generation of ballistic missile submarines should be able to carry out conventional tasks as well as providing a nuclear deterrence. In a recent RUSI paper Malcolm Chalmers suggests the use of such ‘dual-use’ boats. His suggestion calls for the design and construction for a new generation of submarines that will perform conventional roles similar to that of the current Astute-class but carry a smaller number of Trident missiles to maintain a nuclear deterrence. However a new generation of submarines is not necessarily required. During the last decade the US has successfully converted four of their Ohio-class ballistic missile submarines for conventional tasks by carrying cruise missiles and the ability to deploy Special Forces. It should be possible to add this capability to the current Vanguard-class boats once they start beginning refitted for the life extension program. Replacing all but four of the Trident missiles would allow for ten of the tubes to be used for cruise missiles and the remaining two to be converted into lock-out chambers for use by Special Forces. In a conventional conflict the Vanguard-class would have a new capability they never had before with the ability to launch seventy cruise missiles during the conflict. Extending their life beyond the currently planned thirty years would mean that the building of seven Astute-class boats could be scaled back and allow both classes of boats to be replaced at the same time by a new class, designed around a multirole capability. The next generation of submarines could even keep the number of converted ballistic missile tubes, maintaining the potential for the submarines to be rearmed in the event that the international situation deteriorates. Having a larger fleet of around seven submarines that have the ability to carry nuclear weapons also allows for possibility that not all the submarines would carry nuclear missiles all the time. Potential adversaries would then find it difficult to decide which submarines carry the nuclear weapons and add an aspect of deniability to whether nuclear weapons are deployed on a boat conducting conventional operations. Only having three of the seven boats armed with Trident missiles would allow CASD to continue.

In conclusion, during such tough government spending cuts and the apparent insistence of the Treasury for the MoD to pay for Tridents renewal it is necessary for the deterrence to provide real value for money. Other options such as nuclear tipped cruise missiles - that would be cheaper than the current proposals - lack the ability to provide the UK with a credible deterrence that may be needed should the current national security threats change. The best way to provide value for money would be to change the role that the Vanguard-class currently plays in the armed forces. Giving the submarines the conventional capability described would provide real benefits to defence planning and capabilities as well as allowing a capability to prepare for a potentially uncertain and unthinkable nuclear future.


Families of French engineers killed in a 2002 bomb attack in Pakistan will lodge a manslaughter suit against former president Jacques Chirac.

Their civil suit for manslaughter and endangering life also targets former prime minister Dominique de Villepin and former executives involved in arms deals linked to the case, the families’ lawyer Olivier Morice told AFP. Investigators suspect the bombing in Karachi in 2002, which killed 11 French engineers and at least three Pakistanis, was revenge for the cancelling by Chirac of commissions for officials in the sale of submarines to Pakistan. “Our complaint is going to target how the decision was arrived at to stop the commissions,” Morice told AFP, saying the suit was prompted by recent testimony from arms executives in the case. Morice on Thursday also called for France’s current President Nicolas Sarkozy to be questioned by a magistrate investigating the affair, a complex case linked to allegations of illegal political funding. Investigators have also heard from witnesses who allege Sarkozy was linked to the commissions. He has dismissed the case as a “fairytale


China has announced that it has successfully launched a domestically-made submarine in the South China Sea.

CCTV news channel broadcast the above video of submariners on the maiden voyage of the vessel, including the moment a robot planted a Chinese national flag at the bottom of the South China Sea.  The China-made submarine reached depths of more than two miles, according to CCTV.  China has declared that it is the fifth country to produce a submarine that can withstand depths of more than two miles below sea level, after the United States, Russia, France, and Japan.  Speaking at a briefing on Thursday, Ma Yanhe, head of social development at the Ministry of Technology said the test was successfully carried out.  "The submarine made a record of operating under sea for 9 hours and 3 minutes, so the equipment on board successfully passed the test and operated at depths of more than 3,000 metres and met the relevant standards," Ma said.  The date the mission was carried out is not known.


Buying submarines that nobody can operate is a bit foolhardy

The SA Navy submarine SAS Manthatisi could not put to sea because she did not have a trained crew, SA Navy’s chief director maritime strategy, Rear-Admiral Bernhard Teuteberg, told members of Parliament’s defence portfolio committee. Teuteberg, said the fact that the submarine was currently dry-docked at the Simon’s Town naval dockyard was “not only the batteries” as alluded to by Defence Minister Lindiwe Sisulu, early this year in a written reply to a parliamentary question. She said the Manthatisi was languishing in the submarine shed at the naval base “to minimise exposure to the elements while its batteries are being subjected to maintenance”. Okay, I am thinking here why spend billions of rands on submarines when we don’t have crews to operate them? But I guess it’s just me thinking. It’s like buying a Lamborghini before getting your drivers licence, and then realising much later that you in fact need to learn how to drive and get a licence – a conclusion that only needs common sense. If we can’t operate them, we might as well loan them to the Somali pirates – that way we will get some money out of owning them.

Venezuela will be incorporating several “non-atomic” submarines

Very soon “we will have our submarines cruising” which will be “normal submarines”, with no nuclear capacity at all, pointed out Venezuelan president Hugo Chavez, in anticipation of any criticisms “that could suggest such an option”.


The ‘Kilo’ class Russian built submarine The ‘Kilo’ class Russian built submarine.


Nevertheless it is believed they are Russian built, since their incorporation was begun to be talked about back in 2005. Apparently they are three diesel-electric powered subs of the “Varshavianka” class, project 636 (‘Kilo’ according to NATO nomenclature), at a cost of over a billion US dollars of which 800 million were financed by Moscow. The ‘Kilo’ class submersibles are third generation equipped with four 533 mm torpedo launchers and ten missile launchers from cruise Club-S. These weapons could enable the subs to attack fixed or mobile submerged, coastal or sea surface targets under conditions of intense “radio-electronic” interference. Currently the Venezuelan navy has two German built submarines U-209, launched in 1975 that were refurbished but are considered of “limited action”.


The U-214 and Greece’s Submarine Predicament.

On Monday Sept 21, 2009, ThyssenKrupp Marine informed the Greek Minister of Defence that it was cancelling “The Archimedes Project” contract for 4 U-214 diesel-electric submarines with Air-Independent Propulsion technology, because the government’s payments had remained underwater for too long. Accumulated payment arrears were over EUR 520 million (then $767 million), and so ThyssenKrupp and its subsidiary Hellenic Shipyards sought international arbitration, in order to recover some of the payments due under its contract. That development was the just the latest chapter in a long and continuing saga. If the issue remained unresolved, or arbitration results in termination payments but no delivery, Greece could find itself without a submarine force. Greece currently fields 8 boats: 4 Glavkos class U-209/1100 boats commissioned between 1971-1979 (S110-S113), and 4 Poseidon class U-209/1200 boats (S114, S117, S118, S119) commissioned from 1979-1980.

In 1989, the Neptune I program began to upgrade the 4 Glavkos class boats. They received flank array sonar and significant electronics upgrades, including the ability to fire UGM-84 Harpoon anti-ship missiles. In 2002, Hellenic shipyards received the Neptune II contract for the “mid life” modernization and repair of 3 Poseidon class boats, which included cutting the hull and installing an 6.5m long Air-Independent Propulsion section, as well as hydrogen storage tanks for the AIP. Flank array sonar, electronics upgrades, an electro-optic mast with satellite communication capability, and Harpoon missile-firing capability reportedly round out the upgrade’s major features. While Neptune II proceeded, the Greek government signed a contract in February 2000 for 3 of HDW’s new Type 214 submarines + 1 option. It was the first order for the new class. Papanikolis (S120), the first-of-class U-214, was laid down in Kiel, Germany in February 2001 and launched in April 2004. In January 2005, HDW’s ThyssenKrupp Marine (TKMS) parent company bought Hellenic Shipyards near Athens, Greece, and invested heavily in modernizing it. Submarine work had already been underway since 2002, and Hellenic Shipyards built the next 3 Greek U-214 submarines: S121 Pipinos, S122 Matrozos, and S123 Katsonis. Once the Papanikolis’ sea trials began in 2006, however, the Hellenic Navy found a host of issues with the new submarine. Poor performance from the AIP system that supplements its diesel engines for long underwater operations, problems with the ISUS combat system, poor surface sea keeping in high seas, and hydraulic system issues were among the major flaws reported. The Navy refused acceptance, leaving HDW to fix the boat.



February 23, 2010: A year ago, the U.S. Navy cancelled its ASDS (Advanced Seal Delivery Systems) minisub project, after over a decade of effort, and nearly a billion dollars spent. This inspired a commercial submarine company (Submergence Group) to try and build what the SEALs needed, but do it more quickly and cheaply. So, in less than a year, and spending about $10 million of their own money, Submergence Group delivered their S301 SEAL delivery system minisub to the navy for evaluation. The S302 was built to commercial standards. It can dive to 200 meters (600 feet) and has air locks so that divers can enter or leave the S301 while submerged. The 13 ton, 8 meter (25 foot) S301 carries two crew and eight SEAL commandos. The S301 can fit into the 12-meter (38 foot) dry deck shelter that can be attacked to American SSNs. This allows the S301 crew and passengers to enter the minisub via a SSN hatch. Then the dry deck shelter is flooded, and the S301 can proceed to the target area. The S301 provides 12 hours of operation via lithium ion batteries. The navy was so impressed with the S301, that they leased it for a year, to see if it, or a variant, could meet the ASDS requirements. All this was made possible by the fact that commercial materials and shipbuilding technology had advanced so much in the last two decades that a recreational submarine industry had developed. These private subs are not cheap, but for the very wealthy, and maritime research operations, they are affordable. 

It was four years ago that the U.S. Navy SEALs were told that they were not going to get their six ASDS. Only the first one had been built, and it was not a success. After a decade of development, the ASDS had too many technical problems, and construction of the other five was cancelled. Only the first one remained, and it sort of worked. Then, fifteen months ago, the sole ASDS caught fire, and burned for six hours. The navy was reluctant to repair the vessel. Instead, it was decided to try and develop a similar vessel, using components of the ASDS that did work. In the meantime, the S301 showed up, rather unexpectedly.

The ASDS was a 65-foot long, 60-ton mini-submarine. Battery powered and with a crew of two, the ASDS could carry up to 14 passengers (fewer if a lot of equipment is being brought along, the usual number of passengers is expected to be eight.) With a max range of 200 kilometres, top speed of 14 kilometres an hour and max diving depth of 200 feet, the ASDS operates from one of the seven nuclear submarine equipped to carry it on its deck. The ASDS is equipped with passive and active sonar, radar and an electronic periscope (that uses a video camera, not the traditional optics). While a nice piece of engineering, each ASDS cost over $300 million. Fortunately for the navy, SOCOM (Special Operations Command) was paying for the ASDS boats. That means that army rangers and marine recon troops would also train to use ASDS. Delta Force was to try them out as well. Little is said publicly about how often, and where, ASDS would be used. The types of missions ASDS was designed for are often kept secret for a long time. The ASDS first production boat underwent testing in Hawaii and the Persian Gulf for three years, before being declared ready for service and in 2004. But problems kept cropping up, until the production of the other five was cancelled in 2006. Apparently there was not a big demand for something like the ASDS, as there was no urgent request for a replacement design.

The S301 saves a lot of money by skipping lots of the high tech sensors, and "additional features" that some admiral or contractor tacked on for no particular reason (but that increased the cost, and complexity, of the system a lot.) The regular warship builders and defence contractors dismiss something like the S301 as a "civilian toy," but the troops have some input, and they are definitely interested.



European naval defence company DCNS has begun the construction work of Brazilian Navy?s first SSK-class diesel-electric powered submarine. The company launched the industrial production phase of the submarine at its Cherbourg facility on May 27, 2010. The forward half of the vessel will be built at the Cherbourg centre, DCNS said in a statement. The first phase production work began nine months after Brazil signed a contract to procure four such conventional submarines which would be  based on the French/Spanish Scorpene submarines. As per the contract, the first vessel would be jointly constructed by DCNS and Brazil. The rest of the three subs will be built in Brazil  under transfer of technology agreement. The first SSK-class submarine is scheduled to enter service with the Brazilian Navy in 2017.  All the four submarines will use conventional or diesel-electric  propulsion systems. Each sub will have a water displacement capacity of  less than 2,000 tons. The vessels will be designed keeping in mind the Brazilian Navy's  specific requirements, which would include anti-surface and    anti-submarine warfare capabilities along with special operations and   intelligence gathering.


Japan Wants More Subs.

August 11, 2010: Since the 1970s, Japan has maintained a fleet of at least 18 diesel-electric submarines. Now, in the face of growing Chinese naval power, this fleet is to be increased, to 21 or 24. China currently has about 60 submarines, none of them as effective as the Japanese boats, despite seven of them being nuclear. The Japanese crews are also better trained, but the Chinese are building better ships with more intensively trained crews. Two other Chinese neighbors, South Korea and Australia, are also increasing their submarine forces.  For the last three decades, Japan has replaced their subs after about 25 years, with newer designs based on experience with the previous classes. The new expansion will probably be accomplished by building more of the new Soryu class. There are two Soryu class boats in service and four under construction. These 2,900 ton boats have a crew of 65, six 533mm (21 inch) torpedo tubes and 30 torpedoes or Harpoon anti-ship missiles. There are also two 76mm tubes for launching acoustic countermeasures. Sonar and electronics are superior to the previous class. These boats also have AIP (Air Independent Propulsion) that enables them to remain submerged for a week or more at a time. Top surface speed is 24 kilometers an hour, top submerged speed is 37 kilometers an hour. Currently Japan also has eleven 2,700 ton Oyashio class subs, built 1994-2008. With a crew of 70, they are armed with six 533mm (21 inch) torpedo tubes and 27 torpedoes or Harpoon anti-ship missiles. Their sonar equipment is superior to that of the Harushio class. Top surface speed is 24 kilometers an hour, top submerged speed is 37 kilometers an hour. There are five Harushio class boats, plus two diverted to training duties. These 2,400 ton boats were built 1987-1997 and have crews of 65-70 sailors. They are armed with six 533mm (21 inch) torpedo tubes and 26 torpedoes or Harpoon anti-ship missiles. They have hull mounted and towed sonar. Top surface speed is 24 kilometers an hour, top submerged speed is 37 kilometers an hour.


USNS Safeguard Showcases Submarine Rescue

SOUTH CHINA SEA - The cramped and lengthy ride in a submarine rescue chamber (SRC) may seem miserable at the time, but imagine if you were part of the crew of a bottomed submarine and your life depended on squeezing into this sweltering, steamy little compartment. Submariners around the globe would gladly endure these conditions for the sake of survival, and in the unlikely case of a submarine casualty their survival is a humanitarian interest that requires cooperation across national and alliance boundaries. 


To demonstrate a commitment to this humanitarian aid discipline, the U.S. Navy along with navies from Australia, Japan, the Republic of Korea, and the Republic of Singapore conducted a Submarine Escape and Rescue (SMER) exercise, codenamed Pacific Reach, from 17 to 25 Aug. U.S. Military Sealift Command rescue and salvage ship USNS Safeguard (T-ARS 50) and the San Diego-based Deep Submergence Unit (DSU) participated in a variety of submarine rescue drills, including multiple deployments of the U.S. submarine rescue chamber, demonstrating a highly sophisticated level of international interoperability to conduct humanitarian submarine rescue missions.  “This exercise shows that our systems can work with international navies’ submarine systems, and that our procedures are similar and we can cross over,” said Cmdr. David Lemly, commanding officer of DSU. “In an actual rescue, multiple nations would respond and we may end up using several different systems—whichever can get there first. So it’s important that we not only know how we can operate together, but that we are communicating and have confidence that we can operate together.”

Pacific Reach is the largest and most sophisticated submarine rescue exercise conducted in the Asia Pacific region. Senior military officials from thirteen countries participated as observers, including Canada, China, France, India, Indonesia, Italy, Malaysia, Pakistan, South Africa, Sweden, Thailand, the United Kingdom and Vietnam.  “In Southeast Asia our job is to provide rescue, salvage, towing and diving services for any asset for any of the countries here if it’s been requested,” said Senior Chief Master Diver Ted Walker, from the Pearl Harbor-based Mobile Diver Salvage Unit One. “Our mobile diver unit is very versatile, and we can provide a ready rescue cell anywhere in the world. Right now we’re providing a platform for DSU and we’re helping them to do this exercise.”

Safeguard was one of two submarine rescue support vessels—including the Singaporean MV Swift Rescue—that served as the focal point for a series of submarine rescue events. The DSU deployed the SRC from Safeguard using a large crane to lift the massive capsule over the side. Using this SRC, the DSU conducted successful open-hatch matings with JDS Arashio and RSS Chieftain; submarines from Japan and the Republic of Singapore that bottomed for this simulated rescue scenario.  During one event, four countries were represented in a single simulated rescue and chamber mating. Naval officers from the U.S., China, and Republic of Singapore were sealed together inside the U.S. SRC for more than three hours as they were lowered via tether to mate with Arashio. At a depth of nearly 200 feet, the SRC connected with the submarine, and a U.S. Navy diver inside the SRC opened Arashio’s hatch to shake hands with Japanese crew members from the bottomed submarine.

This year's exercise, the fifth in the series, was hosted by the RSN for the second time and consisted of a shore phase conducted at the Changi Command and Control Center and a sea phase held in the South China Sea. The exercise also comprised a medical symposium as well as simulated evacuation and treatment of personnel from submarines in distress.  “The medical portion of this exercise is essential. We rescue submariners and not submarines, so just getting the guys to the surface isn’t necessarily enough,” said Lt. Cmdr. Jeffrey Gertner, a U.S. Navy deep submergence medical officer aboard MV Swift Rescue. “One of the biggest challenges is that things get really chaotic with many patients. You can’t bring a hospital out here, so you have to do the best with what you have, which means you usually have limited manpower and lots of injuries all at once.” Medical teams from the U.S. were among the countries participating in medical symposiums and drills to share ideas and practices with each other, with the goal of overall improving the survival rates of submariners who may be rescued from high-pressure underwater environments.  “It’s important worldwide to be able to support the submarine force,” said Gertner. “We’re sending them out into harm’s way, and it’s crucial to be able to have a plan and resources to save them if necessary.”

Exercise Pacific Reach aims to develop regional submarine escape and rescue capabilities and strengthen interoperability in submarine rescue operations among participating navies. Speaking at the opening of the exercise, RSN's Fleet Commander, Rear- Admiral Joseph Leong, said, "Exercise Pacific Reach serves as a platform to foster cooperation on submarine escape and rescue, as well as to enhance multilateral relations among the submarine operating countries. As more countries acquire or enhance their submarine capabilities in the region, it is also important that we build and maintain a strong network for multilateral submarine rescue collaboration."

This year, the RSN contributed a Landing Ship Tank, RSS Endeavour, submarine RSS Chieftain, MV Swift Rescue and submersible rescue vehicle, Deep Search and Rescue Six. With hyperbaric facilities such as recompression chambers and a high dependency unit, MV Swift Rescue provides immediate and specialized medical treatment to injured personnel who are evacuated from distressed submarines. In 2000, the RSN hosted the first Exercise Pacific Reach, involving navies from Japan, the Republic of Korea and the United States.

ONLY 7 out  of 16 Submarines in India are Operational.

The CAG said in its report that not only were many of the 16 Indian submarines at the end of three-fourths of their life, but that only seven of them were actually operational, with nine undergoing repairs and refit. Two of the submarines, INS (Indian Naval Ship) Vela and INS Vagli, both Foxtrot-class, are due to be decommissioned this year and next year.The report reads, “75 per cent submarines in the IN fleet have already completed three fourths of their estimated operational life. It is pertinent to mention that only 7 out of 16 submarines in IN are operational and 9 submarines are under refit/repair as of October 2009.  As of November 2009, Padeyes fitment has been completed in 11 out of 16 submarines out of which only 4 SSK (Diesel Electric Attack) submarines have been certified by USN for mating with US DSRV for a period of three years effective from 20 December 2007 and of which at least 2 are presently under refit. Two of the serving Foxtrot submarines, on which Padeyes were fitted, INS Vela and INS Vagli, would be de-commissioned in 2010 and 2011 respectively”.The CAG report has also pointed out that any actual submarine rescue would depend on the presence of a USN DSRV, which would take at least 72 hours to get to station from its nearest base, and for the services of which, an agreement was not even in place. “The DSRV is to perform rescue operations on submerged or disabled submarines.


Pentagon plans 'flying submarine'

Pentagon researchers are attempting to develop a military vehicle which can travel underwater like a submarine before bursting out of the waves and flying like an aeroplane.


The manta ray-like flying submarine from The Incredibles.


The manta ray-like flying submarine from The Incredibles. Photo: PIXAR

The Defense Advanced Research Projects Agency , and the US military department, has set about creating an aircraft that can fly low over the water until near its target before disappearing under the sea to avoid detection. I t would then creep closer in submarine form before attacking its target, probably a ship or coastal installation, and fly home. The project, which has been in development since 2008, has reached design proposal stage, and several outside developers have submitted designs. DARPA could start allocating funding to developers in as little as a year. While the principles of hydrodynamic and aerodynamic flight are similar, the technological challenges are profound. Aircraft need to be as light as possible, so that they can use a minimum of power to get airborne, while submarines need to be dense and strong to withstand water pressure. Heavier-than-air aircraft get their lift from airflow over their wings - submarines simply pump water in and out to change their buoyancy.  One method of getting around the latter problem is to design a submarine that is lighter than water, but - like an upside-down aeroplane - uses lift generated by its wings to force it away from the surface. Then, after surfacing, the wings' "angle of attack" would be changed to generate upwards lift instead, allowing it to fly.  Graham Hawkes, a submarine designer, believes that modern lightweight carbon fibre composites could be used to build a craft that is both strong enough and light enough to fly above and below the water. He has already designed and built a submersible craft called the "Super Falcon" which uses stubby wings to "fly" down to 300 metres. He says that if it were given jet engines and larger wings, it could fly at up to 900kph (560mph) in the air, while still being capable of underwater travel at around 18kph (11mph). At these speeds, the behaviour of water and air over the control surfaces is similar. "Think about it as flying under water," says Mr Hawkes. "It can be done. It just needs a lot of work."  One problem could be overcome in a dramatic fashion - in order to get the wings to start generating downward lift, the craft would have to get underwater; but a lighter-than-water vessel would struggle to do so. Mr Hawkes suggests copying birds: "You might have to put the nose down and literally dive, smack, into the water. It would certainly be spectacular." There are a variety of other design problems to overcome. Ordinary batteries capable of giving the craft a 44km (28 mile) range - as specified by DARPA - would weigh more than the rest of the vessel, but running it on ordinary fuel would require a supply of air, meaning a snorkel and a maximum depth of just a few meters.  Also, jet engines - which run at several hundred degrees celsius - would most likely explode from the sudden change in temperature if they were rapidly submerged after airborne use, but piston engines would not survive being immersed in water. Jim McKenna, an engineer at the UK Civil Aviation Authority, says: "You can't let cold seawater get at a hot engine because the thermal shock will blow it apart." The Pentagon's dream of a flying submarine is still some way away yet.


Personal Submarines Make Backyard Diving Possible

Improved materials and electronics are bringing an age-old dream closer to reality: Cruising the depths in your own private submersible. There's a whole world out there to explore underwater, if you have the right ride.  The water is rising. Already the murky, greenish sea is swirling around my feet, and it's coming up fast. Fortunately, I'm staying dry inside a 54-in.-wide watertight acrylic sphere attached to the front end of a 3.5-ton canary-yellow submarine built by an outfit called SEAmagine Hydrospace Corporation. This craft is the prototype for a line of personal vehicles that its makers say could change the personal submarine business from a fringe toy for the rich to an industry. "My long-term objective, in one word, is Boeing," says president and CEO William Kohnen, sitting next to me in the pilot's seat. "There's room for a company the size of Boeing in the undersea-vehicles market, and we want to be it." Well, maybe eventually. Meanwhile, it's a perfect day in Southern California, all azure skies and crystalline sunshine, and a small crowd has gathered on the dock here in Huntington Beach to watch us slowly sink below the surface.  As the water laps over our heads, the dome vanishes, leaving the powerful illusion that I'm not in a submarine at all, but simply sitting underwater, perfectly dry. We descend slowly to the bottom and hover there. I lean forward and look down at the dark silt beneath my stocking feet. A mud-colored fish wriggles across the seabed, startled by our presence. Overhead, the sun is a quivering yellow-white blob amid the silvery underside of the surface. I expected the descent to be creepy or claustrophobic, but instead it's oddly serene, almost dreamlike. "It's not about getting from point A to point B," Kohnen says. "It's about the ability to hover, and take it all in." The urge to own and operate your personal submarine has long been a nearly impossible dream. For a century, subs have found widespread use as research and military platforms, but a market for leisure craft has remained elusive. Lately these watercraft have found a niche as playthings for the wealthy: A mega­yacht without a submarine is like an RV without a Weber grill. Russian oil billionaire Roman Abramovich has a two-man sub aboard his 377-ft yacht Pelorus, while Paul Allen's 413-ft $450 million Octopus sports a 10-passenger model. Of course, with the worldwide supply of such billionaires a bit depressed at the moment, most personal-sub makers are hoping simply to hold on until the next economic upturn. If the high-end market can survive, technology and design developments might make these vehicles available to a lower tax bracket.  The technical challenges are formidable. Given the corrosive effects of seawater, the incredible pressures that build with depth, and the inherent danger, submarines are very difficult to operate safely and cheaply. Critical systems must be redundant, and structural components have to be engineered to withstand loads many times greater than those likely to be encountered. Add it all up, and submarines are heavy, complicated and expensive.

German U-Boat Cut Back.

Although no one really expected Germany to rebuild the Kriegsmarine U-Boot arm to the levels of it’s glory days of WWII, it was natural for Germany to create a force sufficient for her modern needs. After WWII, Germany transitioned from quantity to quality, incorporating designs and improvements of the late-war Type XXI & XXIII into smaller, but deadlier submarines.  German submarines are still considered to be top-notch, and several have been sold to overseas bidders. Now, however, it seems that the great German submarine tradition may well be on it’s way to history’s dustbin.

BONN, Germany – The German Navy abruptly decommissioned more than half of its submarine fleet on June 1, well ahead of the planned 2016 retirement of the six 500-ton U-206A-class diesel submarines. Now the German sub fleet consists of four U212A vessels. The 1,830-ton boats, among the world’s most modern conventional submarines, have a new hybrid drive with a fuel cell that allows them to operate fully submerged for several weeks. All four were commissioned between 2005 and 2007; the Navy is expecting the delivery of two more slightly modified U-212A-class subs by 2012 or 2013. “At the moment, we expect their operational readiness not later than 2015,” a German Navy spokesman said. The spokesman did not say whether the decommissioning was related to recently announced government plans to cut defense spending. The newspaper Kieler Nachrichten said the decommissioning of the U-206As has dropped Germany from second to sixth place among nations that operate non-nuclear submarines. Between 1973 and 1975, Germany commissioned 18 U206 submarines. In the early 1990s, the service modernized 12 of them to the U-206 A standard, when they were the smallest operating armed submarines in the world, according to Navy officials. The crews of the decommissioned boats will be retrained to serve on the U-212A subs. “Until now, every crew was assigned to its